Skip to main content

Linear time-variant model predictive control in Python.

Project description

ltv-mpc

Build Coverage Documentation PyPI version

Model predictive control (MPC) in Python for systems whose problems can be cast as a quadratic program (QP). This includes linear time-invariant (LTI) and time-variant (LTV) systems with linear constraints. The resulting QP has the form:

ltv-mpc

This module is designed for prototyping. If you need performance, check out the alternatives below.

Installation

pip install ltv-mpc

Usage

This module defines a one-stop shop function:

solve_mpc(problem: MPCProblem, solver: str) -> Plan

The MPCProblem defines the model predictive control problem (LTV system, LTV constraints, initial state and cost function to optimize) while the returned Plan holds the state and input trajectories that result from optimizing the problem (if a solution exists). The solver string is used to select the backend quadratic programming solver.

Example

Let us define a triple integrator:

    import numpy as np

    horizon_duration = 1.0  # [s]
    N = 16  # number of discretization steps
    T = horizon_duration / N
    A = np.array([[1.0, T, T ** 2 / 2.0], [0.0, 1.0, T], [0.0, 0.0, 1.0]])
    B = np.array([T ** 3 / 6.0, T ** 2 / 2.0, T]).reshape((3, 1))

Suppose for the sake of example that acceleration is the main constraint acting on our system. We thus define an acceleration constraint |acceleration| <= max_accel:

    max_accel = 3.0  # [m] / [s] / [s]
    accel_from_state = np.array([0.0, 0.0, 1.0])
    C = np.vstack([+accel_from_state, -accel_from_state])
    e = np.array([+max_accel, +max_accel])

This leads us to the following linear MPC problem:

    from ltv_mpc import MPCProblem

    x_init = np.array([0.0, 0.0, 0.0])
    x_goal = np.array([1.0, 0.0, 0.0])
    problem = MPCProblem(
        transition_state_matrix=A,
        transition_input_matrix=B,
        ineq_state_matrix=C,
        ineq_input_matrix=None,
        ineq_vector=e,
        initial_state=x_init,
        goal_state=x_goal,
        nb_timesteps=N,
        terminal_cost_weight=1.0,
        stage_state_cost_weight=None,
        stage_input_cost_weight=1e-6,
    )

We can solve it with:

    from ltv_mpc import solve_mpc

    solution = solve_mpc(problem, solver="quadprog")

The solution holds complete state and input trajectories as stacked vectors. For instance, we can plot positions, velocities and accelerations as follows:

    import pylab

    t = np.linspace(0.0, horizon_duration, N + 1)
    X = solution.states
    positions, velocities, accelerations = X[:, 0], X[:, 1], X[:, 2]
    pylab.ion()
    pylab.plot(t, positions)
    pylab.plot(t, velocities)
    pylab.plot(t, accelerations)
    pylab.grid(True)
    pylab.legend(("position", "velocity", "acceleration"))

This example produces the following trajectory:

2022-03-30-172206_1920x1080_scrot

The behavior is a weighted compromise between reaching the goal state (weight 1.0) and keeping reasonable finite jerk inputs (weight 1e-6). The latter mitigate bang-bang accelerations but prevent fully reaching the goal within the horizon. See the examples folder for more examples.

Areas of improvement

This module is incomplete with regards to the following points:

  • Cost functions: can be extended to general linear stage cost functions
  • Documentation: there are some undocumented functions
  • Test coverage: only one end-to-end test

Check out the contribution guidelines if you are interested in lending a hand.

Alternatives

This module is designed for faster prototyping rather than performance. You can also check out the following open-source libraries:

Name Systems Languages License
Copra (LTV fork) Linear time-variant Python/C++ BSD-2-Clause
Copra (original) Linear time-invariant Python/C++ BSD-2-Clause
Crocoddyl Nonlinear Python/C++ BSD-3-Clause
mpc-interface Linear time-variant Python/C++ BSD-2-Clause
pyMPC Linear time-variant Python MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ltv-mpc-2.0.0.tar.gz (44.2 kB view details)

Uploaded Source

Built Distribution

ltv_mpc-2.0.0-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file ltv-mpc-2.0.0.tar.gz.

File metadata

  • Download URL: ltv-mpc-2.0.0.tar.gz
  • Upload date:
  • Size: 44.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for ltv-mpc-2.0.0.tar.gz
Algorithm Hash digest
SHA256 05bd6a286939cfda06bbfb83803720f323c371917f901aa7bff1d923f92f7b3d
MD5 0cf55f901308ad851b649251c46b5c97
BLAKE2b-256 6e4ace13e241f6473ffeb5261c9524c9efc90dd7ffa910d603af0c7a0a540484

See more details on using hashes here.

File details

Details for the file ltv_mpc-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: ltv_mpc-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.2

File hashes

Hashes for ltv_mpc-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d63d2ca6a1622a2f65876de6526d7fa8fd59331ebd7590c9e400b5f6f15a2830
MD5 2ed8b2c267a613cc01c32e3958931597
BLAKE2b-256 46f9e88ad9e5d7fbc1ea5997275d35fecaec45f451c1b578ef2d7e368140f493

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page