Skip to main content

Automated ML by d4rk-lucif3r

Project description

Logo

LuciferML a Semi-Automated Machine Learning Library by d4rk-lucif3r

About

The LuciferML is a Semi-Automated Machine Learning Python Library that works with tabular data. It is designed to save time while doing data analysis. It will help you right from data preprocessing to Data Prediction.

The LuciferML will help you with

  1. Preprocessing Data:
    • Encoding
    • Splitting
    • Scaling
    • Dimensionality Reduction
    • Resampling
  2. Trying many different machine learning models with hyperparameter tuning,

Installation

pip install lucifer-ml

Available Preprocessing Techniques

  1. Skewness Correction

    Takes Pandas Dataframe as input. Transforms each column in dataset except the columns given as an optional parameter. Returns Transformed Data.

    Example:

    1. All Columns

      from luciferml.preprocessing import Preprocess as prep

      import pandas as pd

      dataset = pd.read_csv('/examples/Social_Network_Ads.csv')

      dataset = prep.skewcorrect(dataset)

    2. Except column/columns

      from luciferml.preprocessing import Preprocess as prep

      import pandas as pd

      dataset = pd.read_csv('/examples/Social_Network_Ads.csv')

      dataset = prep.skewcorrect(dataset,except_columns=['Purchased'])

    More about Preprocessing here

Available Modelling Techniques

  1. Classification

    Available Models for Classification

     - 'lr' : 'Logistic Regression',
     - 'svm': 'Support Vector Machine',
     - 'knn': 'K-Nearest Neighbours',
     - 'dt' : 'Decision Trees',
     - 'nb' : 'Naive Bayes',
     - 'rfc': 'Random Forest Classifier',
     - 'xgb': 'XGBoost Classifier',
     - 'ann': 'Artificical Neural Network',
    

    Example:

     from luciferml.supervised import classification as cls
     dataset = pd.read_csv('Social_Network_Ads.csv')
     X = dataset.iloc[:, :-1]
     y = dataset.iloc[:, -1]
     cls.Classification(predictor = 'lr').predict(X, y)
    

    More About Classification

  2. Regression

    Available Models for Regression
    
     - 'lin' : 'Linear Regression',
     - 'sgd' : 'Stochastic Gradient Descent Regressor',
     - 'elas': 'Elastic Net Regressot',
     - 'krr' : 'Kernel Ridge Regressor',
     - 'br'  : 'Bayesian Ridge Regressor',
     - 'svr' : 'Support Vector Regressor',
     - 'knr' : 'K-Nearest Regressor',
     - 'dt'  : 'Decision Trees',
     - 'rfr' : 'Random Forest Regressor',
     - 'gbr' : 'Gradient Boost Regressor',
     - 'lgbm': 'LightGB Regressor',
     - 'xgb' : 'XGBoost Regressor',
     - 'cat' : 'Catboost Regressor',
     - 'ann' : 'Artificical Neural Network',
    

    Example:

     from luciferml.supervised import regression as reg
     dataset = pd.read_excel('examples\Folds5x2_pp.xlsx')
     X = dataset.iloc[:, :-1]
     y = dataset.iloc[:, -1]
     reg.Regression(predictor = 'lin').predict(X, y)
    

    More about Regression here

More To be Added Soon

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lucifer-ml-0.0.34.tar.gz (16.1 kB view hashes)

Uploaded Source

Built Distribution

lucifer_ml-0.0.34-py3-none-any.whl (23.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page