Package for the lulling all output
Project description
lull
Developer Guide
Setup
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n lull --file env.yml
Install
pip install -e .
# install from pypi
pip install lull
nbdev
# activate conda environment
$ conda activate lull
# make sure the lull package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to the lull package
$ nbdev_prepare
Publishing
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'
Usage
Installation
Install latest from the GitHub repository:
$ pip install git+https://github.com/dsm-72/lull.git
or from conda
$ conda install -c dsm-72 lull
or from pypi
$ pip install lull
Documentation
Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.
PyTorch Documentation:
TorchData
- How to Package PyTorch Models
torch.monitor.Event
torchvision
torchvision.Datasets.VisionDataset
torchvision.utils.flow_to_image
PyTorch Models to Consider:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lull-0.0.1.tar.gz
(8.9 kB
view hashes)
Built Distribution
lull-0.0.1-py3-none-any.whl
(8.3 kB
view hashes)