Skip to main content

A monitoring solution built on Panel.

Project description

Lumen

Illuminate your data

Build Status Linux/MacOS/Windows Build Status
Coverage codecov
Latest dev release Github tag dev-site
Latest release Github release PyPI version lumen version conda-forge version defaults version
Docs gh-pages site
Support Discourse
Lumen AI Diagram

Lumen is a fully open-source and extensible agent based framework for chatting with data and for retrieval augmented generation (RAG). The declarative nature of Lumen's data model make it possible for LLMs to easily generate entire data transformation pipelines, visualizations and other many other types of output. Once generated the data pipelines and visual output can be easily serialized, making it possible to share them, to continue the analysis in a notebook and/or build entire dashboards.

  • Generate SQL: Generate data pipelines on top of local or remote files, SQL databases or your data lake.
  • Provide context and embeddings: Give Lumen access to your documents to give the LLM the context it needs.
  • Visualize your data: Generate everything from charts to powerful data tables or entire dashboards using natural language.
  • Inspect, validate and edit results: All LLM outputs can easily be inspected for mistakes, refined, and manually edited if needed.
  • Summarize results and key insights: Have the LLM summarize key results and extract important insights.
  • Custom analyses, agents and tools: Extend Lumen custom agents, tools, and analyses to generate deep insights tailored to your domain.

Lumen sets itself apart from other agent based frameworks in that it focuses on being fully open and extensible. With powerful internal primitives for expressing complex data transformations the LLM can gain insights into your datasets out-of-the box and can be further tailored with custom agents, analyses and tools to empower even non-programmers to perform complex analyses without having to code. The customization makes it possible to generate any type of output, allow the user and the LLM to perform analyses tailored to your domain and look up additional information and context easily. Since Lumen is built on Panel it can render almost any type of output with little to no effort, ensuring that even the most esoteric usecase is easily possible.

The declarative Lumen data model further sets it apart from other tools, making it easy for LLMs to populate custom components and making it easy for the user to share the results. Entire multi-step data transformation pipelines be they in SQL or Python can easily be captured and used to drive custom visualizations, interactive tables and more. Once generated the declarative nature of the Lumen specification allows them to be shared, reproducing them in a notebook or composing them through a drag-and-drop interface into a dashboard.

Getting started

Lumen works with Python 3 and above on Linux, Windows, or Mac. The recommended way to install Lumen is using the conda command provided by Anaconda or Miniconda:

conda install -c pyviz lumen

or using PyPI:

pip install 'lumen[ai]'

Once installed you will be able to start a Lumen Explorer server by running (replace data.csv with your data):

lumen-ai serve data.csv

Check out the docs for more details!

Project details


Release history Release notifications | RSS feed

This version

0.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lumen-0.9.0.tar.gz (448.3 kB view details)

Uploaded Source

Built Distribution

lumen-0.9.0-py3-none-any.whl (515.1 kB view details)

Uploaded Python 3

File details

Details for the file lumen-0.9.0.tar.gz.

File metadata

  • Download URL: lumen-0.9.0.tar.gz
  • Upload date:
  • Size: 448.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for lumen-0.9.0.tar.gz
Algorithm Hash digest
SHA256 575a9ef9444eda55a087c0201345d12ce1743f702538cf3170803a4c57d671e6
MD5 a6a0a1c8a0b0455bb39cb7b475924586
BLAKE2b-256 7900990cadd6327f2a43aac70160150e3d7cc343c787ef076e596790ae590e77

See more details on using hashes here.

File details

Details for the file lumen-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: lumen-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 515.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for lumen-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9913ce5b507984317f162e9eac7bc352da7084a11b9223ae8a4edf5680d8df2d
MD5 50c3850c5066955575956c5cedbb0292
BLAKE2b-256 0b27e2a94de1535226d0a51b5518efd28274c9b440ae2e2416da2e2186b88c33

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page