Skip to main content

Galaxian Luminosity Function Constructor package using the 1/Vmax estimator and Schechter model.

Project description

Luminosity Function Constructor and Modeller

This packag allows the user to construct and model Galaxian Luminosity Functions using the $\frac{1}{V_{max}}$ estimator and Schechter function.

PyPI PyPI - Python Version PyPI - Downloads GitHub issues GitHub stars GitHub forks GitHub license

Installation

Use the package manager pip to install lumfunc.

pip install lumfunc

Usage

import lumfunc as lf
import numpy as np

lf.get_maggy(np.array([10, 100, 20])) # returns maggy values
get_maggy( )

Converts magnitudes into maggies.

lf.get_maggy(np.array([10, 100, 20])) 
# returns array([1.e-04, 1.e-40, 1.e-08])

get_patches( )

Divides survey into equally distributed and equally sized patches. Returns labels for patches from RA, Dec, number of patches and patch center guesses.

lf.get_patches(np.array([20, 21, 22, 20, 21, 22]),
            np.array([20, 21, 22, 20, 21, 22]),
            3,
            np.array([[20, 21], [22, 20], [21, 22], [20, 21], [22, 20],
                      [21, 22]]),
            survey='kids',
            numba_installed=True,
            plot_savename='test_patches.png')
# Displays the plot

get_patches

Dependencies

PyPI PyPI PyPI PyPI

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lumfunc-0.2.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

lumfunc-0.2-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file lumfunc-0.2.tar.gz.

File metadata

  • Download URL: lumfunc-0.2.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for lumfunc-0.2.tar.gz
Algorithm Hash digest
SHA256 5866a8fdac18f466ae01ff57f0fe890ba3a88963aa176908af058930aa070d9b
MD5 85f74649aec2e9ce10d14891ee17fe57
BLAKE2b-256 52a89ab0f9fe1037ab022346ce40afbf53796b27a14dfc8a04522099d7451098

See more details on using hashes here.

File details

Details for the file lumfunc-0.2-py3-none-any.whl.

File metadata

  • Download URL: lumfunc-0.2-py3-none-any.whl
  • Upload date:
  • Size: 13.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for lumfunc-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3897cdd90ad5545c305466361cc7b2d0b2c64dd30d44244c6dbbe36e75c79335
MD5 d2546999986969d42006f14fbe7feed4
BLAKE2b-256 42bf634e3f2ba29ea84141cfc968c233abf32552ffc1f300677bd143336efdc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page