Skip to main content

learn to use methods for processing unclear response

Project description

lumpur

learn to use methods for processing unclear response

contribute

  • Learn the instructions on first-contributions.
  • Apply to this repository what you learn there.

features

  • plot_binary() function in viz.plot.binary module.
  • plot_polynomial() function in viz.plot.polynomial module.
  • Polynomial class in num.polynomial module.
  • binary()function in dat.clasdata module.
  • abbr() function in use.misc.info module.

examples

Following are some examples of lumpur.

polynomial

from lumpur.num.polynomial import Polynomial

p1 = Polynomial([1, 2, 3])
print('y1 =', p1)
p2 = Polynomial([0, -2, 5, 6, 9])
print('y2 =', p2)
p3 = p1 + p2
print('y3 =', p3)
y1 = 1 + 2x + 3x^2
y2 = -2x + 5x^2 + 6x^3 + 9x^4
y3 = 1 + 8x^2 + 6x^3 + 9x^4
from lumpur.num.polynomial import Polynomial

p1 = Polynomial([1, -2, 3])
print('y1 =', p1)
p2 = Polynomial([-2, 1])
print('y2 =', p2)
p3 = p1 * p2
print('y3 =', p3)
y1 = 1 - 2x + 3x^2
y2 = -2 + x^1
y3 = -2 + 5x - 8x^2 + 3x^3
from lumpur.num.polynomial import Polynomial
from lumpur.viz.plot.polynomial import plot_polynomial

p1 = Polynomial([-1, 1])
p2 = Polynomial([-3, 1])
p3 = Polynomial([-5, 1])
p4 = Polynomial([-7, 1])
p = p1 * p2 * p3 * p4
dp = p.differentiate()
d2p = dp.differentiate()
d3p = d2p.differentiate()
d4p = d3p.differentiate()
d5p = d4p.differentiate()
x = [0.1*i for i in range(10, 71)]

plot_polynomial(x, p, label='p')
plot_polynomial(x, dp, label='dpdx')
plot_polynomial(x, d2p, label='d2p/dx2')
plot_polynomial(x, d3p, label='d3p/dx3')
plot_polynomial(x, d4p, label='d4p/dx4')

circular decision boundary

0.410.8x1.2y+x2+y2=0

import lumpur.dat.clasdata as ldc
from lumpur.viz.plot.binary import plot_binary

coeffs = [[0.41], [-0.8, -1.2], [1, 0, 1]]
r1 = [0, 1.05, 0.05]
r2 = [0, 1.05, 0.05]
df = ldc.binary(coeffs, r1=r1, r2=r2)
plot_binary(df)

linear decision boundary

x+y=0

import lumpur.dat.clasdata as ldc
from lumpur.viz.plot.binary import plot_binary

coeffs = [[0], [-1, 1]]
df = ldc.binary(coeffs)
plot_binary(df)

abbreviation

import lumpur.use.misc.info as info

print(info.abbrv())
learn to use methods for processing unclear response

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page