Skip to main content

LUNA: drug discovery toolkit

Project description

.. image:: https://github.com/keiserlab/LUNA/blob/master/docs/source/_static/luna.svg


|Docs Status| |Build Status| |Coveralls Status| |PyPi Version| |License|

LUNA [1]_ is an object-oriented Python 3 toolkit for drug design that makes it easy to analyze very large data sets of 3D molecular structures and complexes, and that allows identifying, filtering, and visualizing atomic interactions.

LUNA also implements three hashed interaction fingerprints (IFP): Extended Interaction FingerPrint (EIFP), Functional Interaction FingerPrint (FIFP), and Hybrid Interaction FingerPrint (HIFP) -- inspired by ECFP [2]_, FCFP [2]_, and E3FP [3]_. These IFPs encode molecular interactions at different levels of detail, provide several functionalities to trace individual bits back to their original atomic substructures in the context of the binding site, and are RDKit_-compatible.

Documentation is hosted by ReadTheDocs_, and development occurs on GitHub_.


Installation and Usage
----------------------

The latest stable release (and required dependencies) can be installed as follows:

1. Download LUNA’s `environment.yml <https://github.com/keiserlab/LUNA/blob/master/luna-env.yml>`_ file.

2. Create the Conda environment using the downloaded file:

conda env create -f <LUNA-ENV-FILE>

3. After creating the Conda environment, activate it:

conda activate luna-env

4. Finally, install LUNA from Pip:

pip install luna

For additional installation options and usage instructions, refer to the `documentation <http://luna-toolkit.readthedocs.io>`_.


License
-------

LUNA is available under the |license|.



References
----------

.. [1] |afassio2022|
.. [2] |rogers2010|
.. [3] |axen2017|

.. substitutions

.. |license| replace:: `MIT License`_
.. _MIT License: https://github.com/keiserlab/LUNA/blob/master/LICENSE


.. _RDKit: http://www.rdkit.org
.. _GitHub: https://github.com/keiserlab/LUNA
.. _paper repository: https://github.com/keiserlab/luna-paper
.. _ReadTheDocs: http://luna-toolkit.readthedocs.io

.. |afassio2022_bioRxiv| image:: https://img.shields.io/badge/bioRxiv-136705-blue.svg
:target: https://doi.org/10.1101/2022.05.25.493419
:alt: Access the preprint on bioRxiv
.. |afassio2022_doi| image:: https://img.shields.io/badge/doi-10.1021/acs.jmedchem.7b00696-blue.svg
:target: https://doi.org/10.1021/acs.jcim.2c00695
:alt: Access the paper
.. |afassio2022| replace:: Fassio, A. V.; Shub, L.; Ponzoni, L.; McKinley, J.; O’Meara, M. J.; Ferreira, R. S.; Keiser, M. J.; de Melo Minardi, R. C. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints. J. Chem. Inf. Model. 2022. |afassio2022_doi| |afassio2022_bioRxiv|

.. |axen2017_doi| image:: https://img.shields.io/badge/doi-10.1021/acs.jmedchem.7b00696-blue.svg
:target: http://dx.doi.org/10.1021/acs.jmedchem.7b00696
:alt: Access the paper
.. |axen2017| replace:: Axen, S. D.; Huang, X.-P.; Cáceres, E. L.; Gendelev, L.; Roth, B. L.; Keiser, M. J. A Simple Representation of Three-Dimensional Molecular Structure. J. Med. Chem. 2017, 60 (17), 7393–7409. |axen2017_doi| |bioRxiv| |F1000 recommended|

.. |rogers2010_doi| image:: https://img.shields.io/badge/doi-10.1021/ci100050t-blue.svg
:target: http://dx.doi.org/10.1021/ci100050t
:alt: Access the paper
.. |rogers2010| replace:: Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50 (5), 742–754. |rogers2010_doi|

.. |Build Status| image:: https://travis-ci.org/keiserlab/luna.svg?branch=master
:target: https://travis-ci.org/keiserlab/luna
:alt: Build Status
.. |Docs Status| image:: http://readthedocs.org/projects/luna/badge/?version=latest
:target: http://luna-toolkit.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. |Coveralls Status| image:: https://coveralls.io/repos/github/keiserlab/luna/badge.svg?branch=master
:target: https://coveralls.io/github/keiserlab/luna?branch=master
:alt: Code Coverage
.. |PyPi Version| image:: https://img.shields.io/pypi/v/luna.svg
:target: https://pypi.python.org/pypi/luna
:alt: Package on PyPi
.. |License| image:: https://img.shields.io/badge/License-MIT-yellow.svg
:target: https://github.com/keiserlab/LUNA/blob/master/LICENSE
.. |F1000 recommended| image:: http://cdn.f1000.com.s3.amazonaws.com/images/badges/badgef1000.gif
:target: http://f1000.com/prime/727824514?bd=1
:alt: Access the recommendation on F1000Prime
:width: 120px
:scale: 75 %
.. |bioRxiv| image:: https://img.shields.io/badge/bioRxiv-136705-blue.svg
:target: https://doi.org/10.1101/136705
:alt: Access the preprint on bioRxiv


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

luna-0.13.0.tar.gz (1.4 MB view details)

Uploaded Source

File details

Details for the file luna-0.13.0.tar.gz.

File metadata

  • Download URL: luna-0.13.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for luna-0.13.0.tar.gz
Algorithm Hash digest
SHA256 9e24a9f7850ba40181ea75193ce44167402eff45ae9def182cf5c68db986de89
MD5 c477e95e544814ff7fd0f5df9d4e12e3
BLAKE2b-256 f9ee3128452590de78740b4432fd241a5f35b2adafa88763e3f8adcbcfdfd82e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page