Skip to main content

Python wrapper around Lua and LuaJIT

Project description

Lupa

logo/logo-220x200.png

Lupa integrates the runtimes of Lua or LuaJIT2 into CPython. It is a partial rewrite of LunaticPython in Cython with some additional features such as proper coroutine support.

For questions not answered here, please contact the Lupa mailing list.

Major features

  • separate Lua runtime states through a LuaRuntime class

  • Python coroutine wrapper for Lua coroutines

  • iteration support for Python objects in Lua and Lua objects in Python

  • proper encoding and decoding of strings (configurable per runtime, UTF-8 by default)

  • frees the GIL and supports threading in separate runtimes when calling into Lua

  • tested with Python 2.7/3.5 and later

  • written for LuaJIT2 (tested with LuaJIT 2.0.2), but also works with the normal Lua interpreter (5.1 and later)

  • easy to hack on and extend as it is written in Cython, not C

Why the name?

In Latin, “lupa” is a female wolf, as elegant and wild as it sounds. If you don’t like this kind of straight forward allegory to an endangered species, you may also happily assume it’s just an amalgamation of the phonetic sounds that start the words “Lua” and “Python”, two from each to keep the balance.

Why use it?

It complements Python very well. Lua is a language as dynamic as Python, but LuaJIT compiles it to very fast machine code, sometimes faster than many statically compiled languages for computational code. The language runtime is very small and carefully designed for embedding. The complete binary module of Lupa, including a statically linked LuaJIT2 runtime, only weighs some 700KB on a 64 bit machine. With standard Lua 5.1, it’s less than 400KB.

However, the Lua ecosystem lacks many of the batteries that Python readily includes, either directly in its standard library or as third party packages. This makes real-world Lua applications harder to write than equivalent Python applications. Lua is therefore not commonly used as primary language for large applications, but it makes for a fast, high-level and resource-friendly backup language inside of Python when raw speed is required and the edit-compile-run cycle of binary extension modules is too heavy and too static for agile development or hot-deployment.

Lupa is a very fast and thin wrapper around Lua or LuaJIT. It makes it easy to write dynamic Lua code that accompanies dynamic Python code by switching between the two languages at runtime, based on the tradeoff between simplicity and speed.

Examples

>>> import lupa
>>> from lupa import LuaRuntime
>>> lua = LuaRuntime(unpack_returned_tuples=True)

>>> lua.eval('1+1')
2

>>> lua_func = lua.eval('function(f, n) return f(n) end')

>>> def py_add1(n): return n+1
>>> lua_func(py_add1, 2)
3

>>> lua.eval('python.eval(" 2 ** 2 ")') == 4
True
>>> lua.eval('python.builtins.str(4)') == '4'
True

The function lua_type(obj) can be used to find out the type of a wrapped Lua object in Python code, as provided by Lua’s type() function:

>>> lupa.lua_type(lua_func)
'function'
>>> lupa.lua_type(lua.eval('{}'))
'table'

To help in distinguishing between wrapped Lua objects and normal Python objects, it returns None for the latter:

>>> lupa.lua_type(123) is None
True
>>> lupa.lua_type('abc') is None
True
>>> lupa.lua_type({}) is None
True

Note the flag unpack_returned_tuples=True that is passed to create the Lua runtime. It is new in Lupa 0.21 and changes the behaviour of tuples that get returned by Python functions. With this flag, they explode into separate Lua values:

>>> lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = lua.globals()
>>> g.a
1
>>> g.b
2
>>> g.c is None
True

When set to False, functions that return a tuple pass it through to the Lua code:

>>> non_explode_lua = lupa.LuaRuntime(unpack_returned_tuples=False)
>>> non_explode_lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = non_explode_lua.globals()
>>> g.a
(1, 2)
>>> g.b is None
True
>>> g.c is None
True

Since the default behaviour (to not explode tuples) might change in a later version of Lupa, it is best to always pass this flag explicitly.

Python objects in Lua

Python objects are either converted when passed into Lua (e.g. numbers and strings) or passed as wrapped object references.

>>> wrapped_type = lua.globals().type     # Lua's own type() function
>>> wrapped_type(1) == 'number'
True
>>> wrapped_type('abc') == 'string'
True

Wrapped Lua objects get unwrapped when they are passed back into Lua, and arbitrary Python objects get wrapped in different ways:

>>> wrapped_type(wrapped_type) == 'function'  # unwrapped Lua function
True
>>> wrapped_type(len) == 'userdata'       # wrapped Python function
True
>>> wrapped_type([]) == 'userdata'        # wrapped Python object
True

Lua supports two main protocols on objects: calling and indexing. It does not distinguish between attribute access and item access like Python does, so the Lua operations obj[x] and obj.x both map to indexing. To decide which Python protocol to use for Lua wrapped objects, Lupa employs a simple heuristic.

Pratically all Python objects allow attribute access, so if the object also has a __getitem__ method, it is preferred when turning it into an indexable Lua object. Otherwise, it becomes a simple object that uses attribute access for indexing from inside Lua.

Obviously, this heuristic will fail to provide the required behaviour in many cases, e.g. when attribute access is required to an object that happens to support item access. To be explicit about the protocol that should be used, Lupa provides the helper functions as_attrgetter() and as_itemgetter() that restrict the view on an object to a certain protocol, both from Python and from inside Lua:

>>> lua_func = lua.eval('function(obj) return obj["get"] end')
>>> d = {'get' : 'value'}

>>> value = lua_func(d)
>>> value == d['get'] == 'value'
True

>>> value = lua_func( lupa.as_itemgetter(d) )
>>> value == d['get'] == 'value'
True

>>> dict_get = lua_func( lupa.as_attrgetter(d) )
>>> dict_get == d.get
True
>>> dict_get('get') == d.get('get') == 'value'
True

>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj)["get"] end')
>>> dict_get = lua_func(d)
>>> dict_get('get') == d.get('get') == 'value'
True

Note that unlike Lua function objects, callable Python objects support indexing in Lua:

>>> def py_func(): pass
>>> py_func.ATTR = 2

>>> lua_func = lua.eval('function(obj) return obj.ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj).ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj)["ATTR"] end')
>>> lua_func(py_func)
2

Iteration in Lua

Iteration over Python objects from Lua’s for-loop is fully supported. However, Python iterables need to be converted using one of the utility functions which are described here. This is similar to the functions like pairs() in Lua.

To iterate over a plain Python iterable, use the python.iter() function. For example, you can manually copy a Python list into a Lua table like this:

>>> lua_copy = lua.eval('''
...     function(L)
...         local t, i = {}, 1
...         for item in python.iter(L) do
...             t[i] = item
...             i = i + 1
...         end
...         return t
...     end
... ''')

>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1]   # Lua indexing
1

Python’s enumerate() function is also supported, so the above could be simplified to:

>>> lua_copy = lua.eval('''
...     function(L)
...         local t = {}
...         for index, item in python.enumerate(L) do
...             t[ index+1 ] = item
...         end
...         return t
...     end
... ''')

>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1]   # Lua indexing
1

For iterators that return tuples, such as dict.iteritems(), it is convenient to use the special python.iterex() function that automatically explodes the tuple items into separate Lua arguments:

>>> lua_copy = lua.eval('''
...     function(d)
...         local t = {}
...         for key, value in python.iterex(d.items()) do
...             t[key] = value
...         end
...         return t
...     end
... ''')

>>> d = dict(a=1, b=2, c=3)
>>> table = lua_copy( lupa.as_attrgetter(d) )
>>> table['b']
2

Note that accessing the d.items method from Lua requires passing the dict as attrgetter. Otherwise, attribute access in Lua would use the getitem protocol of Python dicts and look up d['items'] instead.

None vs. nil

While None in Python and nil in Lua differ in their semantics, they usually just mean the same thing: no value. Lupa therefore tries to map one directly to the other whenever possible:

>>> lua.eval('nil') is None
True
>>> is_nil = lua.eval('function(x) return x == nil end')
>>> is_nil(None)
True

The only place where this cannot work is during iteration, because Lua considers a nil value the termination marker of iterators. Therefore, Lupa special cases None values here and replaces them by a constant python.none instead of returning nil:

>>> _ = lua.require("table")
>>> func = lua.eval('''
...     function(items)
...         local t = {}
...         for value in python.iter(items) do
...             table.insert(t, value == python.none)
...         end
...         return t
...     end
... ''')

>>> items = [1, None ,2]
>>> list(func(items).values())
[False, True, False]

Lupa avoids this value escaping whenever it’s obviously not necessary. Thus, when unpacking tuples during iteration, only the first value will be subject to python.none replacement, as Lua does not look at the other items for loop termination anymore. And on enumerate() iteration, the first value is known to be always a number and never None, so no replacement is needed.

>>> func = lua.eval('''
...     function(items)
...         for a, b, c, d in python.iterex(items) do
...             return {a == python.none, a == nil,   -->  a == python.none
...                     b == python.none, b == nil,   -->  b == nil
...                     c == python.none, c == nil,   -->  c == nil
...                     d == python.none, d == nil}   -->  d == nil ...
...         end
...     end
... ''')

>>> items = [(None, None, None, None)]
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]

>>> items = [(None, None)]   # note: no values for c/d => nil in Lua
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]

Note that this behaviour changed in Lupa 1.0. Previously, the python.none replacement was done in more places, which made it not always very predictable.

Lua Tables

Lua tables mimic Python’s mapping protocol. For the special case of array tables, Lua automatically inserts integer indices as keys into the table. Therefore, indexing starts from 1 as in Lua instead of 0 as in Python. For the same reason, negative indexing does not work. It is best to think of Lua tables as mappings rather than arrays, even for plain array tables.

>>> table = lua.eval('{10,20,30,40}')
>>> table[1]
10
>>> table[4]
40
>>> list(table)
[1, 2, 3, 4]
>>> list(table.values())
[10, 20, 30, 40]
>>> len(table)
4

>>> mapping = lua.eval('{ [1] = -1 }')
>>> list(mapping)
[1]

>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping[20]
-20
>>> mapping[3]
-3
>>> sorted(mapping.values())
[-20, -3]
>>> sorted(mapping.items())
[(3, -3), (20, -20)]

>>> mapping[-3] = 3     # -3 used as key, not index!
>>> mapping[-3]
3
>>> sorted(mapping)
[-3, 3, 20]
>>> sorted(mapping.items())
[(-3, 3), (3, -3), (20, -20)]

To simplify the table creation from Python, the LuaRuntime comes with a helper method that creates a Lua table from Python arguments:

>>> t = lua.table(1, 2, 3, 4)
>>> lupa.lua_type(t)
'table'
>>> list(t)
[1, 2, 3, 4]

>>> t = lua.table(1, 2, 3, 4, a=1, b=2)
>>> t[3]
3
>>> t['b']
2

A second helper method, .table_from(), is new in Lupa 1.1 and accepts any number of mappings and sequences/iterables as arguments. It collects all values and key-value pairs and builds a single Lua table from them. Any keys that appear in multiple mappings get overwritten with their last value (going from left to right).

>>> t = lua.table_from([1, 2, 3], {'a': 1, 'b': 2}, (4, 5), {'b': 42})
>>> t['b']
42
>>> t[5]
5

A lookup of non-existing keys or indices returns None (actually nil inside of Lua). A lookup is therefore more similar to the .get() method of Python dicts than to a mapping lookup in Python.

>>> table[1000000] is None
True
>>> table['no such key'] is None
True
>>> mapping['no such key'] is None
True

Note that len() does the right thing for array tables but does not work on mappings:

>>> len(table)
4
>>> len(mapping)
0

This is because len() is based on the # (length) operator in Lua and because of the way Lua defines the length of a table. Remember that unset table indices always return nil, including indices outside of the table size. Thus, Lua basically looks for an index that returns nil and returns the index before that. This works well for array tables that do not contain nil values, gives barely predictable results for tables with ‘holes’ and does not work at all for mapping tables. For tables with both sequential and mapping content, this ignores the mapping part completely.

Note that it is best not to rely on the behaviour of len() for mappings. It might change in a later version of Lupa.

Similar to the table interface provided by Lua, Lupa also supports attribute access to table members:

>>> table = lua.eval('{ a=1, b=2 }')
>>> table.a, table.b
(1, 2)
>>> table.a == table['a']
True

This enables access to Lua ‘methods’ that are associated with a table, as used by the standard library modules:

>>> string = lua.eval('string')    # get the 'string' library table
>>> print( string.lower('A') )
a

Python Callables

As discussed earlier, Lupa allows Lua scripts to call Python functions and methods:

>>> def add_one(num):
...     return num + 1
>>> lua_func = lua.eval('function(num, py_func) return py_func(num) end')
>>> lua_func(48, add_one)
49

>>> class MyClass():
...     def my_method(self):
...         return 345
>>> obj = MyClass()
>>> lua_func = lua.eval('function(py_obj) return py_obj:my_method() end')
>>> lua_func(obj)
345

Lua doesn’t have a dedicated syntax for named arguments, so by default Python callables can only be called using positional arguments.

A common pattern for implementing named arguments in Lua is passing them in a table as the first and only function argument. See http://lua-users.org/wiki/NamedParameters for more details. Lupa supports this pattern by providing two decorators: lupa.unpacks_lua_table for Python functions and lupa.unpacks_lua_table_method for methods of Python objects.

Python functions/methods wrapped in these decorators can be called from Lua code as func(foo, bar), func{foo=foo, bar=bar} or func{foo, bar=bar}. Example:

>>> @lupa.unpacks_lua_table
... def add(a, b):
...     return a + b
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a=a, b=b} end')
>>> lua_func(5, 6, add)
11
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b=b} end')
>>> lua_func(5, 6, add)
11

If you do not control the function implementation, you can also just manually wrap a callable object when passing it into Lupa:

>>> import operator
>>> wrapped_py_add = lupa.unpacks_lua_table(operator.add)

>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b} end')
>>> lua_func(5, 6, wrapped_py_add)
11

There are some limitations:

  1. Avoid using lupa.unpacks_lua_table and lupa.unpacks_lua_table_method for functions where the first argument can be a Lua table. In this case py_func{foo=bar} (which is the same as py_func({foo=bar}) in Lua) becomes ambiguous: it could mean either “call py_func with a named foo argument” or “call py_func with a positional {foo=bar} argument”.

  2. One should be careful with passing nil values to callables wrapped in lupa.unpacks_lua_table or lupa.unpacks_lua_table_method decorators. Depending on the context, passing nil as a parameter can mean either “omit a parameter” or “pass None”. This even depends on the Lua version.

    It is possible to use python.none instead of nil to pass None values robustly. Arguments with nil values are also fine when standard braces func(a, b, c) syntax is used.

Because of these limitations lupa doesn’t enable named arguments for all Python callables automatically. Decorators allow to enable named arguments on a per-callable basis.

Lua Coroutines

The next is an example of Lua coroutines. A wrapped Lua coroutine behaves exactly like a Python coroutine. It needs to get created at the beginning, either by using the .coroutine() method of a function or by creating it in Lua code. Then, values can be sent into it using the .send() method or it can be iterated over. Note that the .throw() method is not supported, though.

>>> lua_code = '''\
...     function(N)
...         for i=0,N do
...             coroutine.yield( i%2 )
...         end
...     end
... '''
>>> lua = LuaRuntime()
>>> f = lua.eval(lua_code)

>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

An example where values are passed into the coroutine using its .send() method:

>>> lua_code = '''\
...     function()
...         local t,i = {},0
...         local value = coroutine.yield()
...         while value do
...             t[i] = value
...             i = i + 1
...             value = coroutine.yield()
...         end
...         return t
...     end
... '''
>>> f = lua.eval(lua_code)

>>> co = f.coroutine()   # create coroutine
>>> co.send(None)        # start coroutine (stops at first yield)

>>> for i in range(3):
...     co.send(i*2)

>>> mapping = co.send(None)   # loop termination signal
>>> sorted(mapping.items())
[(0, 0), (1, 2), (2, 4)]

It also works to create coroutines in Lua and to pass them back into Python space:

>>> lua_code = '''\
...   function f(N)
...         for i=0,N do
...             coroutine.yield( i%2 )
...         end
...   end ;
...   co1 = coroutine.create(f) ;
...   co2 = coroutine.create(f) ;
...
...   status, first_result = coroutine.resume(co2, 2) ;   -- starting!
...
...   return f, co1, co2, status, first_result
... '''

>>> lua = LuaRuntime()
>>> f, co, lua_gen, status, first_result = lua.execute(lua_code)

>>> # a running coroutine:

>>> status
True
>>> first_result
0
>>> list(lua_gen)
[1, 0]
>>> list(lua_gen)
[]

>>> # an uninitialised coroutine:

>>> gen = co(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

>>> gen = co(2)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0)]

>>> # a plain function:

>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

Threading

The following example calculates a mandelbrot image in parallel threads and displays the result in PIL. It is based on a benchmark implementation for the Computer Language Benchmarks Game.

lua_code = '''\
    function(N, i, total)
        local char, unpack = string.char, table.unpack
        local result = ""
        local M, ba, bb, buf = 2/N, 2^(N%8+1)-1, 2^(8-N%8), {}
        local start_line, end_line = N/total * (i-1), N/total * i - 1
        for y=start_line,end_line do
            local Ci, b, p = y*M-1, 1, 0
            for x=0,N-1 do
                local Cr = x*M-1.5
                local Zr, Zi, Zrq, Ziq = Cr, Ci, Cr*Cr, Ci*Ci
                b = b + b
                for i=1,49 do
                    Zi = Zr*Zi*2 + Ci
                    Zr = Zrq-Ziq + Cr
                    Ziq = Zi*Zi
                    Zrq = Zr*Zr
                    if Zrq+Ziq > 4.0 then b = b + 1; break; end
                end
                if b >= 256 then p = p + 1; buf[p] = 511 - b; b = 1; end
            end
            if b ~= 1 then p = p + 1; buf[p] = (ba-b)*bb; end
            result = result .. char(unpack(buf, 1, p))
        end
        return result
    end
'''

image_size = 1280   # == 1280 x 1280
thread_count = 8

from lupa import LuaRuntime
lua_funcs = [ LuaRuntime(encoding=None).eval(lua_code)
              for _ in range(thread_count) ]

results = [None] * thread_count
def mandelbrot(i, lua_func):
    results[i] = lua_func(image_size, i+1, thread_count)

import threading
threads = [ threading.Thread(target=mandelbrot, args=(i,lua_func))
            for i, lua_func in enumerate(lua_funcs) ]
for thread in threads:
    thread.start()
for thread in threads:
    thread.join()

result_buffer = b''.join(results)

# use Pillow to display the image
from PIL import Image
image = Image.fromstring('1', (image_size, image_size), result_buffer)
image.show()

Note how the example creates a separate LuaRuntime for each thread to enable parallel execution. Each LuaRuntime is protected by a global lock that prevents concurrent access to it. The low memory footprint of Lua makes it reasonable to use multiple runtimes, but this setup also means that values cannot easily be exchanged between threads inside of Lua. They must either get copied through Python space (passing table references will not work, either) or use some Lua mechanism for explicit communication, such as a pipe or some kind of shared memory setup.

Restricting Lua access to Python objects

Lupa provides a simple mechanism to control access to Python objects. Each attribute access can be passed through a filter function as follows:

>>> def filter_attribute_access(obj, attr_name, is_setting):
...     if isinstance(attr_name, unicode):
...         if not attr_name.startswith('_'):
...             return attr_name
...     raise AttributeError('access denied')

>>> lua = lupa.LuaRuntime(
...           register_eval=False,
...           attribute_filter=filter_attribute_access)
>>> func = lua.eval('function(x) return x.__class__ end')
>>> func(lua)
Traceback (most recent call last):
 ...
AttributeError: access denied

The is_setting flag indicates whether the attribute is being read or set.

Note that the attributes of Python functions provide access to the current globals() and therefore to the builtins etc. If you want to safely restrict access to a known set of Python objects, it is best to work with a whitelist of safe attribute names. One way to do that could be to use a well selected list of dedicated API objects that you provide to Lua code, and to only allow Python attribute access to the set of public attribute/method names of these objects.

Since Lupa 1.0, you can alternatively provide dedicated getter and setter function implementations for a LuaRuntime:

>>> def getter(obj, attr_name):
...     if attr_name == 'yes':
...         return getattr(obj, attr_name)
...     raise AttributeError(
...         'not allowed to read attribute "%s"' % attr_name)

>>> def setter(obj, attr_name, value):
...     if attr_name == 'put':
...         setattr(obj, attr_name, value)
...         return
...     raise AttributeError(
...         'not allowed to write attribute "%s"' % attr_name)

>>> class X(object):
...     yes = 123
...     put = 'abc'
...     noway = 2.1

>>> x = X()

>>> lua = lupa.LuaRuntime(attribute_handlers=(getter, setter))
>>> func = lua.eval('function(x) return x.yes end')
>>> func(x)  # getting 'yes'
123
>>> func = lua.eval('function(x) x.put = "ABC"; end')
>>> func(x)  # setting 'put'
>>> print(x.put)
ABC
>>> func = lua.eval('function(x) x.noway = 42; end')
>>> func(x)  # setting 'noway'
Traceback (most recent call last):
 ...
AttributeError: not allowed to write attribute "noway"

Importing Lua binary modules

This will usually work as is, but here are the details, in case anything goes wrong for you.

To use binary modules in Lua, you need to compile them against the header files of the LuaJIT sources that you used to build Lupa, but do not link them against the LuaJIT library.

Furthermore, CPython needs to enable global symbol visibility for shared libraries before loading the Lupa module. This can be done by calling sys.setdlopenflags(flag_values). Importing the lupa module will automatically try to set up the correct dlopen flags if it can find the platform specific DLFCN Python module that defines the necessary flag constants. In that case, using binary modules in Lua should work out of the box.

If this setup fails, however, you have to set the flags manually. When using the above configuration call, the argument flag_values must represent the sum of your system’s values for RTLD_NEW and RTLD_GLOBAL. If RTLD_NEW is 2 and RTLD_GLOBAL is 256, you need to call sys.setdlopenflags(258).

Assuming that the Lua luaposix (posix) module is available, the following should work on a Linux system:

>>> import sys
>>> orig_dlflags = sys.getdlopenflags()
>>> sys.setdlopenflags(258)
>>> import lupa
>>> sys.setdlopenflags(orig_dlflags)

>>> lua = lupa.LuaRuntime()
>>> posix_module = lua.require('posix')     # doctest: +SKIP

Building with different Lua versions

The build is configured to automatically search for an installed version of first LuaJIT and then Lua, and failing to find either, to use the bundled LuaJIT or Lua version.

If you wish to build Lupa with a specific version of Lua, you can configure the following options on setup:

Option

Description

--lua-lib <libfile>

Lua library file path, e.g. --lua-lib /usr/local/lib/lualib.a

--lua-includes <incdir>

Lua include directory, e.g. --lua-includes /usr/local/include

--use-bundle

Use bundled LuaJIT or Lua instead of searching for an installed version.

--no-bundle

Don’t use the bundled LuaJIT/Lua, search for an installed version of LuaJIT or Lua, e.g. using pkg-config.

--no-lua-jit

Don’t use or search for LuaJIT, only use or search Lua instead.

Installing lupa

Building with LuaJIT2

  1. Download and unpack lupa

    http://pypi.python.org/pypi/lupa

  2. Download LuaJIT2

    http://luajit.org/download.html

  3. Unpack the archive into the lupa base directory, e.g.:

    .../lupa-0.1/LuaJIT-2.0.2
  4. Build LuaJIT:

    cd LuaJIT-2.0.2
    make
    cd ..

    If you need specific C compiler flags, pass them to make as follows:

    make CFLAGS="..."

    For trickier target platforms like Windows and MacOS-X, please see the official installation instructions for LuaJIT.

    NOTE: When building on Windows, make sure that lua51.lib is made in addition to lua51.dll. The MSVC build produces this file, MinGW does NOT.

  5. Build lupa:

    python setup.py build_ext -i

    Or any other distutils target of your choice, such as build or one of the bdist targets. See the distutils documentation for help, also the hints on building extension modules.

    Note that on 64bit MacOS-X installations, the following additional compiler flags are reportedly required due to the embedded LuaJIT:

    -pagezero_size 10000 -image_base 100000000

    You can find additional installation hints for MacOS-X in this somewhat unclear blog post, which may or may not tell you at which point in the installation process to provide these flags.

    Also, on 64bit MacOS-X, you will typically have to set the environment variable ARCHFLAGS to make sure it only builds for your system instead of trying to generate a fat binary with both 32bit and 64bit support:

    export ARCHFLAGS="-arch x86_64"

    Note that this applies to both LuaJIT and Lupa, so make sure you try a clean build of everything if you forgot to set it initially.

Building with Lua 5.x

It also works to use Lupa with the standard (non-JIT) Lua runtime. The easiest way is to use the bundled lua submodule:

  1. Clone the submodule:

    $ git submodule update --init third-party/lua
  2. Build Lupa:

    $ python3 setup.py bdist_wheel --use-bundle --with-cython

You can also build it by installing a Lua 5.x package, including any development packages (header files etc.). On systems that use the “pkg-config” configuration mechanism, Lupa’s setup.py will pick up either LuaJIT2 or Lua automatically, with a preference for LuaJIT2 if it is found. Pass the --no-luajit option to the setup.py script if you have both installed but do not want to use LuaJIT2.

On other systems, you may have to supply the build parameters externally, e.g. using environment variables or by changing the setup.py script manually. Pass the --no-luajit option to the setup.py script in order to ignore the failure you get when neither LuaJIT2 nor Lua are found automatically.

For further information, read this mailing list post:

https://www.freelists.org/post/lupa-dev/Lupa-with-normal-Lua-interpreter-Lua-51,2

Installing lupa from packages

Debian/Ubuntu + Lua 5.2

  1. Install Lua 5.2 development package:

    $ apt-get install liblua5.2-dev
  2. Install lupa:

    $ pip install lupa

Debian/Ubuntu + LuaJIT2

  1. Install LuaJIT2 development package:

    $ apt-get install libluajit-5.1-dev
  2. Install lupa:

    $ pip install lupa

Depending on OS version, you might get an older LuaJIT2 version.

OS X + Lua 5.2 + Homebrew

  1. Install Lua:

    $ brew install lua
  2. Install pkg-config:

    $ brew install pkg-config
  3. Install lupa:

    $ pip install lupa

Lupa change log

1.14.1 (2022-11-16)

  • Rebuild with Cython 0.29.32 to support Python 3.11.

1.13 (2022-03-01)

  • Bundled Lua source files were missing in the source distribution.

1.12 (2022-02-24)

  • GH#197: Some binary wheels in the last releases were not correctly linked with Lua.

  • GH#194: An absolute file path appeared in the SOURCES.txt metadata of the source distribution.

1.11 (2022-02-23)

  • Use Lua 5.4.4 in binary wheels and as bundled Lua.

  • Built with Cython 0.29.28 to support Python 3.10/11.

1.10 (2021-09-02)

  • GH#147: Lua 5.4 is supported. (patch by Russel Davis)

  • The runtime version of the Lua library as a tuple (e.g. (5,3)) is provided via lupa.LUA_VERSION and LuaRuntime.lua_version.

  • The Lua implementation name and version string is provided as LuaRuntime.lua_implementation.

  • setup.py accepts new command line arguments --lua-lib and --lua-includes to specify the

  • Use Lua 5.4.3 in binary wheels and as bundled Lua.

  • Built with Cython 0.29.24 to support Python 3.9.

1.9 (2019-12-21)

  • Build against Lua 5.3 if available.

  • Use Lua 5.3.5 in binary wheels and as bundled Lua.

  • GH#129: Fix Lua module loading in Python 3.x.

  • GH#126: Fix build on Linux systems that install Lua as “lua52” package.

  • Built with Cython 0.29.14 for better Py3.8 compatibility.

1.8 (2019-02-01)

  • GH#107: Fix a deprecated import in Py3.

  • Built with Cython 0.29.3 for better Py3.7 compatibility.

1.7 (2018-08-06)

  • GH#103: Provide wheels for MS Windows and fix MSVC build on Py2.7.

1.6 (2017-12-15)

  • GH#95: Improved compatibility with Lua 5.3. (patch by TitanSnow)

1.5 (2017-09-16)

  • GH#93: New method LuaRuntime.compile() to compile Lua code without executing it. (patch by TitanSnow)

  • GH#91: Lua 5.3 is bundled in the source distribution to simplify one-shot installs. (patch by TitanSnow)

  • GH#87: Lua stack trace is included in output in debug mode. (patch by aaiyer)

  • GH#78: Allow Lua code to intercept Python exceptions. (patch by Sergey Dobrov)

  • Built with Cython 0.26.1.

1.4 (2016-12-10)

  • GH#82: Lua coroutines were using the wrong runtime state (patch by Sergey Dobrov)

  • GH#81: copy locally provided Lua DLL into installed package on Windows (patch by Gareth Coles)

  • built with Cython 0.25.2

1.3 (2016-04-12)

  • GH#70: eval() and execute() accept optional positional arguments (patch by John Vandenberg)

  • GH#65: calling str() on a Python object from Lua could fail if the LuaRuntime is set up without auto-encoding (patch by Mikhail Korobov)

  • GH#63: attribute/keyword names were not properly encoded if the LuaRuntime is set up without auto-encoding (patch by Mikhail Korobov)

  • built with Cython 0.24

1.2 (2015-10-10)

  • callbacks returned from Lua coroutines were incorrectly mixing coroutine state with global Lua state (patch by Mikhail Korobov)

  • availability of python.builtins in Lua can be disabled via LuaRuntime option.

  • built with Cython 0.23.4

1.1 (2014-11-21)

  • new module function lupa.lua_type() that returns the Lua type of a wrapped object as string, or None for normal Python objects

  • new helper method LuaRuntime.table_from(...) that creates a Lua table from one or more Python mappings and/or sequences

  • new lupa.unpacks_lua_table and lupa.unpacks_lua_table_method decorators to allow calling Python functions from Lua using named arguments

  • fix a hang on shutdown where the LuaRuntime failed to deallocate due to reference cycles

  • Lupa now plays more nicely with other Lua extensions that create userdata objects

1.0.1 (2014-10-11)

  • fix a crash when requesting attributes of wrapped Lua coroutine objects

  • looking up attributes on Lua objects that do not support it now always raises an AttributeError instead of sometimes raising a TypeError depending on the attribute name

1.0 (2014-09-28)

  • NOTE: this release includes the major backwards incompatible changes listed below. It is believed that they simplify the interaction between Python code and Lua code by more strongly following idiomatic Lua on the Lua side.

    • Instead of passing a wrapped python.none object into Lua, None return values are now mapped to nil, making them more straight forward to handle in Lua code. This makes the behaviour more consistent, as it was previously somewhat arbitrary where none could appear and where a nil value was used. The only remaining exception is during iteration, where the first returned value must not be nil in Lua, or otherwise the loop terminates prematurely. To prevent this, any None value that the iterator returns, or any first item in exploded tuples that is None, is still mapped to python.none. Any further values returned in the same iteration will be mapped to nil if they are None, not to none. This means that only the first argument needs to be manually checked for this special case. For the enumerate() iterator, the counter is never None and thus the following unpacked items will never be mapped to python.none.

    • When unpack_returned_tuples=True, iteration now also unpacks tuple values, including enumerate() iteration, which yields a flat sequence of counter and unpacked values.

    • When calling bound Python methods from Lua as “obj:meth()”, Lupa now prevents Python from prepending the self argument a second time, so that the Python method is now called as “obj.meth()”. Previously, it was called as “obj.meth(obj)”. Note that this can be undesired when the object itself is explicitly passed as first argument from Lua, e.g. when calling “func(obj)” where “func” is “obj.meth”, but these constellations should be rare. As a work-around for this case, user code can wrap the bound method in another function so that the final call comes from Python.

  • garbage collection works for reference cycles that span both runtimes, Python and Lua

  • calling from Python into Lua and back into Python did not clean up the Lua call arguments before the innermost call, so that they could leak into the nested Python call or its return arguments

  • support for Lua 5.2 (in addition to Lua 5.1 and LuaJIT 2.0)

  • Lua tables support Python’s “del” statement for item deletion (patch by Jason Fried)

  • Attribute lookup can use a more fine-grained control mechanism by implementing explicit getter and setter functions for a LuaRuntime (attribute_handlers argument). Patch by Brian Moe.

  • item assignments/lookups on Lua objects from Python no longer special case double underscore names (as opposed to attribute lookups)

0.21 (2014-02-12)

  • some garbage collection issues were cleaned up using new Cython features

  • new LuaRuntime option unpack_returned_tuples which automatically unpacks tuples returned from Python functions into separate Lua objects (instead of returning a single Python tuple object)

  • some internal wrapper classes were removed from the module API

  • Windows build fixes

  • Py3.x build fixes

  • support for building with Lua 5.1 instead of LuaJIT (setup.py –no-luajit)

  • no longer uses Cython by default when building from released sources (pass --with-cython to explicitly request a rebuild)

  • requires Cython 0.20+ when building from unreleased sources

  • built with Cython 0.20.1

0.20 (2011-05-22)

  • fix “deallocating None” crash while iterating over Lua tables in Python code

  • support for filtering attribute access to Python objects for Lua code

  • fix: setting source encoding for Lua code was broken

0.19 (2011-03-06)

  • fix serious resource leak when creating multiple LuaRuntime instances

  • portability fix for binary module importing

0.18 (2010-11-06)

  • fix iteration by returning Py_None object for None instead of nil, which would terminate the iteration

  • when converting Python values to Lua, represent None as a Py_None object in places where nil has a special meaning, but leave it as nil where it doesn’t hurt

  • support for counter start value in python.enumerate()

  • native implementation for python.enumerate() that is several times faster

  • much faster Lua iteration over Python objects

0.17 (2010-11-05)

  • new helper function python.enumerate() in Lua that returns a Lua iterator for a Python object and adds the 0-based index to each item.

  • new helper function python.iterex() in Lua that returns a Lua iterator for a Python object and unpacks any tuples that the iterator yields.

  • new helper function python.iter() in Lua that returns a Lua iterator for a Python object.

  • reestablished the python.as_function() helper function for Lua code as it can be needed in cases where Lua cannot determine how to run a Python function.

0.16 (2010-09-03)

  • dropped python.as_function() helper function for Lua as all Python objects are callable from Lua now (potentially raising a TypeError at call time if they are not callable)

  • fix regression in 0.13 and later where ordinary Lua functions failed to print due to an accidentally used meta table

  • fix crash when calling str() on wrapped Lua objects without metatable

0.15 (2010-09-02)

  • support for loading binary Lua modules on systems that support it

0.14 (2010-08-31)

  • relicensed to the MIT license used by LuaJIT2 to simplify licensing considerations

0.13.1 (2010-08-30)

  • fix Cython generated C file using Cython 0.13

0.13 (2010-08-29)

  • fixed undefined behaviour on str(lua_object) when the object’s __tostring() meta method fails

  • removed redundant “error:” prefix from LuaError messages

  • access to Python’s python.builtins from Lua code

  • more generic wrapping rules for Python objects based on supported protocols (callable, getitem, getattr)

  • new helper functions as_attrgetter() and as_itemgetter() to specify the Python object protocol used by Lua indexing when wrapping Python objects in Python code

  • new helper functions python.as_attrgetter(), python.as_itemgetter() and python.as_function() to specify the Python object protocol used by Lua indexing of Python objects in Lua code

  • item and attribute access for Python objects from Lua code

0.12 (2010-08-16)

  • fix Lua stack leak during table iteration

  • fix lost Lua object reference after iteration

0.11 (2010-08-07)

  • error reporting on Lua syntax errors failed to clean up the stack so that errors could leak into the next Lua run

  • Lua error messages were not properly decoded

0.10 (2010-07-27)

0.9 (2010-07-23)

  • fixed Python special double-underscore method access on LuaObject instances

  • Lua coroutine support through dedicated wrapper classes, including Python iteration support. In Python space, Lua coroutines behave exactly like Python generators.

0.8 (2010-07-21)

  • support for returning multiple values from Lua evaluation

  • repr() support for Lua objects

  • LuaRuntime.table() method for creating Lua tables from Python space

  • encoding fix for str(LuaObject)

0.7 (2010-07-18)

  • LuaRuntime.require() and LuaRuntime.globals() methods

  • renamed LuaRuntime.run() to LuaRuntime.execute()

  • support for len(), setattr() and subscripting of Lua objects

  • provide all built-in Lua libraries in LuaRuntime, including support for library loading

  • fixed a thread locking issue

  • fix passing Lua objects back into the runtime from Python space

0.6 (2010-07-18)

  • Python iteration support for Lua objects (e.g. tables)

  • threading fixes

  • fix compile warnings

0.5 (2010-07-14)

  • explicit encoding options per LuaRuntime instance to decode/encode strings and Lua code

0.4 (2010-07-14)

  • attribute read access on Lua objects, e.g. to read Lua table values from Python

  • str() on Lua objects

  • include .hg repository in source downloads

  • added missing files to source distribution

0.3 (2010-07-13)

  • fix several threading issues

  • safely free the GIL when calling into Lua

0.2 (2010-07-13)

  • propagate Python exceptions through Lua calls

0.1 (2010-07-12)

  • first public release

License

Lupa

Copyright (c) 2010-2017 Stefan Behnel. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Lua

(See https://www.lua.org/license.html)

Copyright © 1994–2017 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lupa-1.14.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (272.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (295.8 kB view details)

Uploaded PyPy manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-pp38-pypy38_pp73-win_amd64.whl (270.6 kB view details)

Uploaded PyPy Windows x86-64

lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (272.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (295.6 kB view details)

Uploaded PyPy manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl (220.6 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

lupa-1.14.1-pp37-pypy37_pp73-win32.whl (225.0 kB view details)

Uploaded PyPy Windows x86

lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (274.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (297.5 kB view details)

Uploaded PyPy manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp311-cp311-win_amd64.whl (233.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

lupa-1.14.1-cp311-cp311-musllinux_1_1_x86_64.whl (297.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp311-cp311-musllinux_1_1_aarch64.whl (289.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

lupa-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (283.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (284.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

lupa-1.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (305.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp311-cp311-macosx_10_15_universal2.whl (476.8 kB view details)

Uploaded CPython 3.11 macOS 10.15+ universal2 (ARM64, x86-64)

lupa-1.14.1-cp310-cp310-win_amd64.whl (237.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

lupa-1.14.1-cp310-cp310-win32.whl (204.8 kB view details)

Uploaded CPython 3.10 Windows x86

lupa-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl (299.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl (288.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

lupa-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (285.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl (286.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.28+ ARM64

lupa-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (307.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp310-cp310-macosx_10_15_x86_64.whl (264.9 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

lupa-1.14.1-cp39-cp39-win_amd64.whl (283.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

lupa-1.14.1-cp39-cp39-win32.whl (206.7 kB view details)

Uploaded CPython 3.9 Windows x86

lupa-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl (303.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl (293.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

lupa-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (287.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (254.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lupa-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (304.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (307.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (308.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp39-cp39-macosx_10_15_x86_64.whl (265.2 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

lupa-1.14.1-cp38-cp38-win_amd64.whl (283.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

lupa-1.14.1-cp38-cp38-win32.whl (206.8 kB view details)

Uploaded CPython 3.8 Windows x86

lupa-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl (303.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl (292.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

lupa-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (287.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (254.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lupa-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (305.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (305.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (309.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp38-cp38-macosx_10_15_x86_64.whl (263.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

lupa-1.14.1-cp37-cp37m-win_amd64.whl (280.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

lupa-1.14.1-cp37-cp37m-win32.whl (204.0 kB view details)

Uploaded CPython 3.7m Windows x86

lupa-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl (294.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl (287.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

lupa-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (285.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl (252.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64 manylinux: glibc 2.24+ ARM64

lupa-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (310.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (310.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (307.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp37-cp37m-macosx_10_15_x86_64.whl (260.5 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

lupa-1.14.1-cp36-cp36m-win_amd64.whl (280.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

lupa-1.14.1-cp36-cp36m-win32.whl (233.8 kB view details)

Uploaded CPython 3.6m Windows x86

lupa-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl (295.3 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

lupa-1.14.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (285.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.24+ x86-64

lupa-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (283.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

lupa-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (310.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl (310.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ i686

lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl (308.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ i686 manylinux: glibc 2.5+ i686

lupa-1.14.1-cp36-cp36m-macosx_10_15_x86_64.whl (259.5 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

lupa-1.14.1-cp35-cp35m-win_amd64.whl (289.0 kB view details)

Uploaded CPython 3.5m Windows x86-64

lupa-1.14.1-cp35-cp35m-win32.whl (232.8 kB view details)

Uploaded CPython 3.5m Windows x86

lupa-1.14.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (307.2 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl (308.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.5+ i686

lupa-1.14.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (302.0 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl (304.1 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ i686

lupa-1.14.1-cp27-cp27m-win_amd64.whl (225.4 kB view details)

Uploaded CPython 2.7m Windows x86-64

lupa-1.14.1-cp27-cp27m-win32.whl (188.6 kB view details)

Uploaded CPython 2.7m Windows x86

lupa-1.14.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (302.0 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

lupa-1.14.1-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl (304.1 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ i686

lupa-1.14.1-cp27-cp27m-macosx_10_15_x86_64.whl (257.8 kB view details)

Uploaded CPython 2.7m macOS 10.15+ x86-64

File details

Details for the file lupa-1.14.1.tar.gz.

File metadata

  • Download URL: lupa-1.14.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1.tar.gz
Algorithm Hash digest
SHA256 d0fd4e60ad149fe25c90530e2a0e032a42a6f0455f29ca0edb8170d6ec751c6e
MD5 693ea329c3411ea1fe9242ad7951b244
BLAKE2b-256 14c5a281abc9c349a48c535be62da6e6b1b0fb5c75d5308d752fe5f843ed4f02

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 7f6bc9852bdf7b16840c984a1e9f952815f7d4b3764585d20d2e062bd1128074
MD5 107a863b4eb4502188edc2cba9839ed4
BLAKE2b-256 1a8e38211722b3a8ac5dad5ce6be0bc835a704c52c6256745b2bec9b0eb13a0e

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 8f65d2007092a04616c215fea5ad05ba8f661bd0f45cde5265d27150f64d3dd8
MD5 5abfd476f00ce2c75a30aaf68dfd1757
BLAKE2b-256 f14aa4cd0d552d1a28f3ae7b4c3255c5d139f91a429c5b97d567975662e7a3bc

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 270.6 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 930092a27157241d07d6d09ff01d5530a9e4c0dd515228211f2902b7e88ec1f0
MD5 7118c83d8167d3efc91db058d79704e4
BLAKE2b-256 37f292f76e70a6400529efc7800aaefb8d3032886f5bd38d9186394dff6aeddf

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 b3efe9d887cfdf459054308ecb716e0eb11acb9a96c3022ee4e677c1f510d244
MD5 a14e32a1580b154614cb90220a8b9971
BLAKE2b-256 1be9d7f0a2c06bfc1acd85a990e67362c0b8c23d0cb00d882a356caf9abb300b

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 723fff6fcab5e7045e0fa79014729577f98082bd1fd1050f907f83a41e4c9865
MD5 c01becec6548e0bdad823c2691bd74aa
BLAKE2b-256 6960cc9d55fbf429b22ac4edcb19b5a8287453b4cb3f4b640a9dd9661e4033b5

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 220.6 kB
  • Tags: PyPy, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6d87d6c51e6c3b6326d18af83e81f4860ba0b287cda1101b1ab8562389d598f5
MD5 704fea818144642249796f50dbba1e78
BLAKE2b-256 ecfe703ae5113cb10b64f6ff1b71e070ff0da101b43b98ece4d1e24fee996051

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 225.0 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 8a064d72991ba53aeea9720d95f2055f7f8a1e2f35b32a35d92248b63a94bcd1
MD5 066ad1a7e291b3d944598b014130d817
BLAKE2b-256 c61740f14be8139db1ddb3dabfb06a6a0b98e0b0879eaf5e52e2bd5b008210ff

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 0ac862c6d2eb542ac70d294a8e960b9ae7f46297559733b4c25f9e3c945e522a
MD5 bc14d274c9614545d507406ac7396883
BLAKE2b-256 87777534f553e53653b12b0b93ddc99b7601c441d61015ae24de4a81cf6a5c11

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 0a15680f425b91ec220eb84b0ab59d24c4bee69d15b88245a6998a7d38c78ba6
MD5 2405b9fece1f8c2570d9182c39404d33
BLAKE2b-256 65fea70aee825d2bb356cb045fded23ff8da0544514a5870188b2044513cbbf6

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 233.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 63a27c38295aa971730795941270fff2ce65576f68ec63cb3ecb90d7a4526d03
MD5 b3a95fcd87cf20ddc0fd787203203048
BLAKE2b-256 79859f9124f3e0866279cd449d8258a9ca18b90f14875823cda8f687b20f3fdd

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp311-cp311-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 297.2 kB
  • Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 40cf2eb90087dfe8ee002740469f2c4c5230d5e7d10ffb676602066d2f9b1ac9
MD5 0ea475849016e2d0506f85d7002a181b
BLAKE2b-256 8473aeb964b8c0a6d9f54cb5e252e6f22a779f7bf1454abb287fc08a7f152033

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp311-cp311-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 289.0 kB
  • Tags: CPython 3.11, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc4f5e84aee0d567aa2e116ff6844d06086ef7404d5102807e59af5ce9daf3c0
MD5 b9e77d56b3f91e2cb8a512838b94e4cc
BLAKE2b-256 29e25c6cbd98f0759d1f649ee12ffa5c786d1a7db56dd1f4b4ea303fcc0c6b0e

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 a17ebf91b3aa1c5c36661e34c9cf10e04bb4cc00076e8b966f86749647162050
MD5 a11d90296ca4d758b3a37a22b333f403
BLAKE2b-256 019f4b1a4111720af378cb0c82f4990fe36ef87967c85d22a5989bb408be48d7

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 aa1449aa1ab46c557344867496dee324b47ede0c41643df8f392b00262d21b12
MD5 57cef76196c7eb544063c125edaae949
BLAKE2b-256 45b8c69680565dbfe0edb61cc3cb7c54ab86e53b89afa7eb0dc1c91bdb4d5e55

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 b1d9cfa469e7a2ad7e9a00fea7196b0022aa52f43a2043c2e0be92122e7bcfe8
MD5 563a9e4c38dee6e60daa9f85ab525585
BLAKE2b-256 71d07f4c7bad49735e2e97f251996a958efb442030c7358b01d5e2110ea9c636

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp311-cp311-macosx_10_15_universal2.whl.

File metadata

  • Download URL: lupa-1.14.1-cp311-cp311-macosx_10_15_universal2.whl
  • Upload date:
  • Size: 476.8 kB
  • Tags: CPython 3.11, macOS 10.15+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp311-cp311-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 1b8bda50c61c98ff9bb41d1f4934640c323e9f1539021810016a2eae25a66c3d
MD5 67a4f65a212ec9aff91f7bf998899a07
BLAKE2b-256 6974d4e3b4bd3efa0d3549786abb8936cf71f0b2575c28a79dc03672bb672a6c

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 237.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b83100cd7b48a7ca85dda4e9a6a5e7bc3312691e7f94c6a78d1f9a48a86a7fec
MD5 ca0f9b1e564e0a4204aaba0315d6e83e
BLAKE2b-256 b909cf936b8e234772b3c38a5359ae39d0e8987263ca3bad3006cf2284733b67

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 204.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4a44e1fd0e9f4a546fbddd2e0fd913c823c9ac58a5f3160fb4f9109f633cb027
MD5 1891d5c17cb51e9fe1a8637a2ed8878d
BLAKE2b-256 898270092401f4c0ed85df83e46b27fd76e5d8614181784b0a5349034963e126

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 299.1 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5fef8b755591f0466438ad0a3e92ecb21dd6bb1f05d0215139b6ff8c87b2ce65
MD5 9e5a3febbce13cce353f4973ac3f7bdc
BLAKE2b-256 3fc053b6be38b7db4c7ba7ba6f91dabf65848ba239baac2a33f014246c6c62ae

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 288.9 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7068ae0d6a1a35ea8718ef6e103955c1ee143181bf0684604a76acc67f69de55
MD5 90cdca6381a63f74ca8278cf3228eabf
BLAKE2b-256 4f27753c91705fbd07964f72f9cd56e24090331a6ca18f09d5bcf43ee808c17c

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 36d888bd42589ecad21a5fb957b46bc799640d18eff2fd0c47a79ffb4a1b286c
MD5 b65eba80dcf6736cad9c44826d8b0534
BLAKE2b-256 34cf4e80c2326b6baf5b09fbbdd877a25bfbd569a501ad24b8f55804d0340d0f

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d688a35f7fe614720ed7b820cbb739b37eff577a764c2003e229c2a752201cea
MD5 b97ac99f9014db0bae396da8a7c6780e
BLAKE2b-256 f1765d72d9aae68e0c445f83077bf5ddbd046344636ce95096cfab7728e6b4c1

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 0423acd739cf25dbdbf1e33a0aa8026f35e1edea0573db63d156f14a082d77c8
MD5 5a97c46cd9f1cf562fd4db44a9fd2d7b
BLAKE2b-256 2cfedad8ba8f8c344272f08f3855804facbe504814d0e212be9308122c68c371

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 264.9 kB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9706a192339efa1a6b7d806389572a669dd9ae2250469ff1ce13f684085af0b4
MD5 193d8ad4e1c8c082e7466f91d2473011
BLAKE2b-256 d2fa2d85327372a6d20f6f42fd31249b91d61bb7f86b4e8077754c0a371e9b47

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 283.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf643bc48a152e2c572d8be7fc1de1c417a6a9648d337ffedebf00f57016b786
MD5 50e7ed6668ab2cfa0ca8ad93c88c879a
BLAKE2b-256 58069312f52552c6c5ff10ffd3632aacc115d2116a933e7164f8005470509a7b

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 206.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d891b43b8810191eb4c42a0bc57c32f481098029aac42b176108e09ffe118cdc
MD5 a8e6043a6ea31bf6cd486176cedb5b95
BLAKE2b-256 f8722ae60f1ab240b48c05947283db3186046dbf81740a7740c81555b7910cd8

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 303.3 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 62530cf0a9c749a3cd13ad92b31eaf178939d642b6176b46cfcd98f6c5006383
MD5 40ce29afc7c2ea9a27f401bc224ea971
BLAKE2b-256 6766eb60a421fb754a095f96f97d87ae33256f86321f26359ebf6e496399d592

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 293.0 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 77b587043d0bee9cc738e00c12718095cf808dd269b171f852bd82026c664c69
MD5 8470a96c10229d5f4e53cedddcda8ede
BLAKE2b-256 3a5145df320abc3d1f42b9c803f8193885ad530f1df90e9231b6f6306e2a6f5d

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 2116eb467797d5a134b2c997dfc7974b9a84b3aa5776c17ba8578ed4f5f41a9b
MD5 3b48092f4cd7e4ac9892d90fbb24ce22
BLAKE2b-256 18f40ba216e7f95fd5515733f4d180449f76c634e80be7f5799e9764fd3dfa02

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 30d356a433653b53f1fe29477faaf5e547b61953b971b010d2185a561f4ce82a
MD5 306ff508594f81bc1c0063766551630c
BLAKE2b-256 44a76074e192a062bf787e39c5329f6ec40df6c25859ebf3c7ef5c0faa347418

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 304.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69be1d6c3f3ab9fc988c9a0e5801f23f68e2c8b5900a8fd3ae57d1d0e9c5539c
MD5 06d3e1a6025d9bbd7a47fae958b775bc
BLAKE2b-256 af554eab44a6934411b173154e034c12a08956e346ac7e9a85d9cfb38e83592a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 307.2 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9144ecfa5e363f03e4d1c1e678b081cd223438be08f96604fca478591c3e3b53
MD5 10d4550a7e26acae376fb95752b25eab
BLAKE2b-256 4a5f67c2fdb59a4056d13d987deb9258a21c4edb026728eb47e8cbae2fe86634

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 24d6c3435d38614083d197f3e7bcfe6d3d9eb02ee393d60a4ab9c719bc000162
MD5 cb71ef6ad8b1c9a7d9d013076177ed5f
BLAKE2b-256 2d2b266cf2b5f2b0d4c33dec127214cab6cd25fc2dc1c9d8c5ab1db2b992c77a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 265.2 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 72589a21a3776c7dd4b05374780e7ecf1b49c490056077fc91486461935eaaa3
MD5 b1d0a2f5fbb75e425f8c2f8f4edfaf2c
BLAKE2b-256 eb766bfa8b2f8b9b72587e3d28a88d2b47c2e6d10dc94b890c70a7244a853592

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 283.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c79ced2aaf7577e3d06933cf0d323fa968e6864c498c376b0bd475ded86f01f3
MD5 08558c4361e8ba173a77574d78554b7b
BLAKE2b-256 c0562f48ba22deeeb6a345fbea9018b26d4a5534d6b7a2a0388b96a59c05b4d8

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 206.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b6953854a343abdfe11aa52a2d021fadf3d77d0cd2b288b650f149b597e0d02d
MD5 54fd9149bcc4f7e91af53b1b844fa0bb
BLAKE2b-256 48274d574306a558edf810d9841ddb21b9dce4be49b264116dd86d077cf230cd

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 303.1 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c0efaae8e7276f4feb82cba43c3cd45c82db820c9dab3965a8f2e0cb8b0bc30b
MD5 6a62f25283dce994cd54718c955ead89
BLAKE2b-256 803ea0ff79f4383995dec89e1fa2d1918bb0a01bef0ca30646b4cadfd3a868e2

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 292.7 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 96a201537930813b34145daf337dcd934ddfaebeba6452caf8a32a418e145e82
MD5 04c0e86f2aec1d884fa48491c4686835
BLAKE2b-256 9e74f70c815fe4f1036c043bcd5afe8fd1fdb18f7546f0e5ce1194ff19a29f60

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 4ea185c394bf7d07e9643d868e50cc94a530bb298d4bdae4915672b3809cc72b
MD5 02b7966eec074f09569dc918dea4b87d
BLAKE2b-256 7927a9dc4113640fc98b8cce2b0015122775af01cd21d83c98b305a4404ebe9a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 abe3fc103d7bd34e7028d06db557304979f13ebf9050ad0ea6c1cc3a1caea017
MD5 bdf429fe136e472c17bbda8581d217ed
BLAKE2b-256 75d2853f1137bd6eb78cba016765fc341603a1aebc9e5465ed06f318e3323556

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 305.7 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dec7580b86975bc5bdf4cc54638c93daaec10143b4acc4a6c674c0f7e27dd363
MD5 3765ac86c37fe6298992f12d14fc4bee
BLAKE2b-256 4ad0dbb8ca2f6f4f150f13e69b44e6c298250fb3d35bf73e8edd062b755850b4

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 305.7 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d6f5bfbd8fc48c27786aef8f30c84fd9197747fa0b53761e69eb968d81156cbf
MD5 4381205d1e9f60ae78a23aca27aa030b
BLAKE2b-256 68f8ed7467f89e5448f08b904bd580d7fcf2072f523a18cfc7d9c3bce45481e2

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 6aff7257b5953de620db489899406cddb22093d1124fc5b31f8900e44a9dbc2a
MD5 d96dac5c69181b0a7da92ce2acdae5a8
BLAKE2b-256 1e6ba80f5a29783cb3b683138429d4493ab1e57c2a132d63c9ec7b30dc46024b

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 263.1 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d251ba009996a47231615ea6b78123c88446979ae99b5585269ec46f7a9197aa
MD5 06698a0ae5c26310da185843bfedb2c6
BLAKE2b-256 6a78b58520136d5a3d2f37fc7ded882546bef800a1863a674cd6720eda327304

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 280.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 51d6965663b2be1a593beabfa10803fdbbcf0b293aa4a53ea09a23db89787d0d
MD5 32adf953c94a69647fc2a564f042d011
BLAKE2b-256 6340c45736f12e6dc6cf9900e1e459212716388414e6d7c551ebf1f7d0fe022e

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 204.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ca58da94a6495dda0063ba975fe2e6f722c5e84c94f09955671b279c41cfde96
MD5 c846cf8e8db1d01f205c1bdbedb05f0e
BLAKE2b-256 0147cdb5a9b477f515a259f085c97db6cd6b752e12c77eb8fa851ff2958c0f47

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 294.8 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4bd789967cbb5c84470f358c7fa8fcbf7464185adbd872a6c3de9b42d29a6d26
MD5 f07964b7033c5d26a67302b1ceec7e60
BLAKE2b-256 2fcac81a24c449e975d5e9a640f281c2fd6cfde6cdd3fe9bc19f69e35625647f

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl
  • Upload date:
  • Size: 287.7 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5fbe7f83b0007cda3b158a93726c80dfd39003a8c5c5d608f6fdf8c60c42117f
MD5 27ae1810336687b61c62669922ebd95e
BLAKE2b-256 0dc456055bf8dee1f5a62a3a1d03328eb5ce89e28adae525a49f3dc11a9f2bc9

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 7ad96923e2092d8edbf0c1b274f9b522690b932ed47a70d9a0c1c329f169f107
MD5 a1694afa6314ac0ed90f9f79bc1554de
BLAKE2b-256 c866d5bd6e7e05482fe94945f9e70da0e38d1291ed6da506953bfbda869b3b11

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 46dcbc0eae63899468686bb1dfc2fe4ed21fe06f69416113f039d88aab18f5dc
MD5 19a113fa61fd16dce4e3ceea0ba63ae6
BLAKE2b-256 97e8f9196d7c35aa7d3c321428a23aa76428e997bbe4dce57435067f4b2757a2

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bce60847bebb4aa9ed3436fab3e84585e9094e15e1cb8d32e16e041c4ef65331
MD5 5ad11e871ef675e54c15d2b6825ef7ff
BLAKE2b-256 1dc9f21dbcb406529a61e94e1e192d7686a89b6df6e8f86c63f467c1e5014ec2

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 310.7 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0ed071efc8ee231fac1fcd6b6fce44dc6da75a352b9b78403af89a48d759743c
MD5 d00e46829672f616ae9e3751dd7c932f
BLAKE2b-256 7ead5227c380401788e1db64448d2f3a2fcad2134972404c118a3eee4ce17906

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 364b291bf2b55555c87b4bffb4db5a9619bcdb3c02e58aebde5319c3c59ec9b2
MD5 5d9e1e8afefe4f4c70321b3b2f4abc84
BLAKE2b-256 6407d9624f6561210ebb24f53bacff76d85894c4db4ae97082e0eb4b4ca176e4

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 260.5 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 350ba2218eea800898854b02753dc0c9cfe83db315b30c0dc10ab17493f0321a
MD5 404c96bb833da72b1af1af5db02e7c51
BLAKE2b-256 effa35214fa80a9f392771e256514b19c1656e5d21af823b9577439e53afbe2e

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 280.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 61ff409040fa3a6c358b7274c10e556ba22afeb3470f8d23cd0a6bf418fb30c9
MD5 0a11d1bffef6f1c7df7227845c5bac62
BLAKE2b-256 a1345ca684b231f517aa3b23b6d7f636b5215af406a4700ea5dc7d07d09f51a6

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 233.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9b9d1b98391959ae531bbb8df7559ac2c408fcbd33721921b6a05fd6414161e0
MD5 7e9120057918f2a59ea59f5b3188f320
BLAKE2b-256 e55a03cbd3c89895dc075149c7d0af482f4963c11ba7980fed3b808b54b55d8c

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 295.3 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8912459fddf691e70f2add799a128822bae725826cfb86f69720a38bdfa42410
MD5 5e2c48fe4d3013cf733e1a9fed4190ac
BLAKE2b-256 32c2a8c3f153d5de453e05bd521c21aa2cf4a3aa2b1b5b5bedbac999272fddc4

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 2ee480d31555f00f8bf97dd949c596508bd60264cff1921a3797a03dd369e8cd
MD5 1fa4ff323559b10387ba5cf5b226d470
BLAKE2b-256 a6cfd751750343c353390874fcfb78b55b6d7f91b2a39b9d4bd7636dc29caa2b

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1661c890861cf0f7002d7a7e00f50c885577954c2d85a7173b218d3228fa3869
MD5 24d69c45d3b6dbd1d2bbed6977b23a6a
BLAKE2b-256 a977ba64587d87845193082bb07cfd3bc69938965a6f157839341a0ecc6c2cab

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8986dba002346505ee44c78303339c97a346b883015d5cf3aaa0d76d3b952744
MD5 01dfdca18ff97a104b819de016dbee52
BLAKE2b-256 c010c8c18210887db5468d0f22db990c6f6f2510d5c6044da62b79c0f5118a35

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 310.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 47f1459e2c98480c291ae3b70688d762f82dbb197ef121d529aa2c4e8bab1ba3
MD5 6cf15761b99804901045568dfe57c8f9
BLAKE2b-256 caaf5721c073c007325dd8e897cc5b4f06ba082c41f80b56e43d09aa6a2a973a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_24_i686.whl
Algorithm Hash digest
SHA256 1ff93560c2546d7627ab2f95b5e88f000705db70a3d6041ac29d050f094f2a35
MD5 6ae30bfaef469f5e0b85a0793c08be04
BLAKE2b-256 16f7316a20427119c215128d2828ae2300d33ead1434ed8710ebf104c3f31270

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 259.5 kB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c8bddd22eaeea0ce9d302b390d8bc606f003bf6c51be68e8b007504433b91280
MD5 440d0648bdc96fd22452243726f9f019
BLAKE2b-256 39f191cac10890171b515c88de736acee22b5b340890d259b8b81d46931d541b

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 289.0 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 297d801ba8e4e882b295c25d92f1634dde5e76d07ec6c35b13882401248c485d
MD5 d926d5f4e3ef0b0d053eb64e494fcff5
BLAKE2b-256 514b339b641c52f5e337ad375c06d6d9daad5af5a8c8573538c1c06c85d5b2ec

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 232.8 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 f26b73d10130ad73e07d45dfe9b7c3833e3a2aa1871a4ecf5ce2dc1abeeae74d
MD5 a11200c4eee30ed162b7d8599a815f04
BLAKE2b-256 19819f8e6a8d6f1f1f8e7ec61faf8c694f27fa537633140c7b54e889a8317de0

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d61fb507a36e18dc68f2d9e9e2ea19e1114b1a5e578a36f18e9be7a17d2931d1
MD5 140c79a7a406fb5c149913e7435346bf
BLAKE2b-256 7109ed9032197a3f2a940a801a3dda20d8bba0361f49e4382fa7a592ad603d99

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 308.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 457330e7a5456c4415fc6d38822036bd4cff214f9d8f7906200f6b588f1b2932
MD5 3a2caac0e57e60dee51bfc3480d58457
BLAKE2b-256 25bc30829546fd6be8ef3b8ad6fa86043a82cef890c153e3539b2a645a162a31

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0aac06098d46729edd2d04e80b55d9d310e902f042f27521308df77cb1ba0191
MD5 361baf0e51e29d3557a48feb43f8023b
BLAKE2b-256 430c2b3567b4dc960cc9aff91ba6b7190b9a1473c4b2b473159e134b35a1764a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 304.1 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e36f3eb70705841bce9c15e12bc6fc3b2f4f68a41ba0e4af303b22fc4d8667c
MD5 91d3208629b84b81872736d91a14c35b
BLAKE2b-256 86697149b9d4428559d9ac06b8aef9f227cf007957e4cd0d466f3bdf20cb5fc2

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 225.4 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 e754cbc6cacc9bca6ff2b39025e9659a2098420639d214054b06b466825f4470
MD5 f62b0e914e3234f4fe92b113beafa6d2
BLAKE2b-256 0e1fd4446bde5ed99e1c08c8403d7aa5f4a6e244c4dd2b1a950866347710f027

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: lupa-1.14.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 188.6 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2dacdddd5e28c6f5fd96a46c868ec5c34b0fad1ec7235b5bbb56f06183a37f20
MD5 80e57236723282ad563d1d15d7ac9ac5
BLAKE2b-256 85a66ae8cb57602cd16b49b32deffa3d9f87124c5181b9a5ccef768df7a56280

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lupa-1.14.1-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3865f9dbe9a84bd6a471250e52068aaf1147f206a51905fb6d93e1db9efb00ee
MD5 2623e929265cd31ed87d922f8b4ad1a6
BLAKE2b-256 7efe678e7f87008549ab54c10370797ea3e4559a329fb20ea3143c64cfd9f09a

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: lupa-1.14.1-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 304.1 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c685143b18c79a3a1fa25a4cc774a87b5a61c606f249bcf824d125d8accb6b2c
MD5 8593cfce20fe33a4e03d12d54dc02f4f
BLAKE2b-256 76c869d5b4175a2d16197fc8d59d6e4f92cddbf3bacb0c2f9ddaf6842c87993d

See more details on using hashes here.

Provenance

File details

Details for the file lupa-1.14.1-cp27-cp27m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: lupa-1.14.1-cp27-cp27m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 257.8 kB
  • Tags: CPython 2.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.7.1 requests/2.26.0 setuptools/57.4.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for lupa-1.14.1-cp27-cp27m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 20b486cda76ff141cfb5f28df9c757224c9ed91e78c5242d402d2e9cb699d464
MD5 98cd2d924b0da7eed5ce5bcedce51ce3
BLAKE2b-256 49269db151706f371cb5c05cbf8e704a1728637c54bf0aa77d3fc690db798797

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page