Skip to main content

LVSM - Pytorch

Project description

LVSM - Pytorch (wip)

Implementation of LVSM, SOTA Large View Synthesis with Minimal 3d Inductive Bias, from Adobe Research

We will focus only on the Decoder-only architecture in this repository.

This paper lines up with another from ICLR 2025

Install

$ pip install lvsm-pytorch

Usage

import torch
from lvsm_pytorch import LVSM

rays = torch.randn(2, 4, 6, 256, 256)
images = torch.randn(2, 4, 3, 256, 256)

target_rays = torch.randn(2, 6, 256, 256)
target_images = torch.randn(2, 3, 256, 256)

model = LVSM(
    dim = 512,
    max_image_size = 256,
    patch_size = 32,
    depth = 2,
)

loss = model(
    input_images = images,
    input_rays = rays,
    target_rays = target_rays,
    target_images = target_images
)

loss.backward()

# after much training

pred_images = model(
    input_images = images,
    input_rays = rays,
    target_rays = target_rays,
) # (2, 3, 256, 256)

assert pred_images.shape == target_images.shape

Or from the raw camera intrinsic / extrinsics (please submit an issue or pull request if you see an error. new to view synthesis and out of my depths here)

import torch
from lvsm_pytorch import LVSM, CameraWrapper

input_intrinsic_rotation = torch.randn(2, 4, 3, 3)
input_extrinsic_rotation = torch.randn(2, 4, 3, 3)
input_translation = torch.randn(2, 4, 3)
input_uniform_points = torch.randn(2, 4, 3, 256, 256)

target_intrinsic_rotation = torch.randn(2, 3, 3)
target_extrinsic_rotation = torch.randn(2, 3, 3)
target_translation = torch.randn(2, 3)
target_uniform_points = torch.randn(2, 3, 256, 256)

images = torch.randn(2, 4, 4, 256, 256)
target_images = torch.randn(2, 4, 256, 256)

lvsm = LVSM(
    dim = 512,
    max_image_size = 256,
    patch_size = 32,
    channels = 4,
    depth = 2,
)

model = CameraWrapper(lvsm)

loss = model(
    input_intrinsic_rotation = input_intrinsic_rotation,
    input_extrinsic_rotation = input_extrinsic_rotation,
    input_translation = input_translation,
    input_uniform_points = input_uniform_points,
    target_intrinsic_rotation = target_intrinsic_rotation,
    target_extrinsic_rotation = target_extrinsic_rotation,
    target_translation = target_translation,
    target_uniform_points = target_uniform_points,
    input_images = images,
    target_images = target_images,
)

loss.backward()

# after much training

pred_target_images = model(
    input_intrinsic_rotation = input_intrinsic_rotation,
    input_extrinsic_rotation = input_extrinsic_rotation,
    input_translation = input_translation,
    input_uniform_points = input_uniform_points,
    target_intrinsic_rotation = target_intrinsic_rotation,
    target_extrinsic_rotation = target_extrinsic_rotation,
    target_translation = target_translation,
    target_uniform_points = target_uniform_points,
    input_images = images,
)

Citations

@inproceedings{Jin2024LVSMAL,
    title   = {LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias},
    author  = {Haian Jin and Hanwen Jiang and Hao Tan and Kai Zhang and Sai Bi and Tianyuan Zhang and Fujun Luan and Noah Snavely and Zexiang Xu},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273507016}
}
@article{Zhang2024CamerasAR,
    title     = {Cameras as Rays: Pose Estimation via Ray Diffusion},
    author    = {Jason Y. Zhang and Amy Lin and Moneish Kumar and Tzu-Hsuan Yang and Deva Ramanan and Shubham Tulsiani},
    journal   = {ArXiv},
    year      = {2024},
    volume    = {abs/2402.14817},
    url       = {https://api.semanticscholar.org/CorpusID:267782978}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lvsm_pytorch-0.0.15.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

lvsm_pytorch-0.0.15-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file lvsm_pytorch-0.0.15.tar.gz.

File metadata

  • Download URL: lvsm_pytorch-0.0.15.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for lvsm_pytorch-0.0.15.tar.gz
Algorithm Hash digest
SHA256 df1450e7ad25183b63421b393b53ac2449670d1995382877032d7bc65ae63f8f
MD5 152cf4e27768cd16440b8c1c5b0cdcca
BLAKE2b-256 11b374fd8aa903a575d875448361d2f06222fd503f31f4d5ddffbbd879e4f8a3

See more details on using hashes here.

File details

Details for the file lvsm_pytorch-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for lvsm_pytorch-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 18300d386da41bb348295d7f39820ebb71710cafb804b7f0f818cb23c0116417
MD5 f76a3960e99a3f4a87774abd2db60f2e
BLAKE2b-256 55f84f623e6e94c92dcbaed55bed62b7bc3c52686a817c0947756998241ede57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page