Skip to main content

LVSM - Pytorch

Project description

LVSM - Pytorch (wip)

Implementation of LVSM, SOTA Large View Synthesis with Minimal 3d Inductive Bias, from Adobe Research

We will focus only on the Decoder-only architecture in this repository.

This paper lines up with another from ICLR 2025

Install

$ pip install lvsm-pytorch

Usage

import torch
from lvsm_pytorch import LVSM

rays = torch.randn(2, 4, 6, 256, 256)
images = torch.randn(2, 4, 3, 256, 256)

target_rays = torch.randn(2, 6, 256, 256)
target_images = torch.randn(2, 3, 256, 256)

model = LVSM(
    dim = 512,
    max_image_size = 256,
    patch_size = 32,
    depth = 2,
)

loss = model(
    input_images = images,
    input_rays = rays,
    target_rays = target_rays,
    target_images = target_images
)

loss.backward()

# after much training

pred_images = model(
    input_images = images,
    input_rays = rays,
    target_rays = target_rays,
) # (2, 3, 256, 256)

assert pred_images.shape == target_images.shape

Or from the raw camera intrinsic / extrinsics (please submit an issue or pull request if you see an error. new to view synthesis and out of my depths here)

import torch
from lvsm_pytorch import LVSM, CameraWrapper

input_intrinsic_rotation = torch.randn(2, 4, 3, 3)
input_extrinsic_rotation = torch.randn(2, 4, 3, 3)
input_translation = torch.randn(2, 4, 3)
input_uniform_points = torch.randn(2, 4, 3, 256, 256)

target_intrinsic_rotation = torch.randn(2, 3, 3)
target_extrinsic_rotation = torch.randn(2, 3, 3)
target_translation = torch.randn(2, 3)
target_uniform_points = torch.randn(2, 3, 256, 256)

images = torch.randn(2, 4, 4, 256, 256)
target_images = torch.randn(2, 4, 256, 256)

lvsm = LVSM(
    dim = 512,
    max_image_size = 256,
    patch_size = 32,
    channels = 4,
    depth = 2,
)

model = CameraWrapper(lvsm)

loss = model(
    input_intrinsic_rotation = input_intrinsic_rotation,
    input_extrinsic_rotation = input_extrinsic_rotation,
    input_translation = input_translation,
    input_uniform_points = input_uniform_points,
    target_intrinsic_rotation = target_intrinsic_rotation,
    target_extrinsic_rotation = target_extrinsic_rotation,
    target_translation = target_translation,
    target_uniform_points = target_uniform_points,
    input_images = images,
    target_images = target_images,
)

loss.backward()

# after much training

pred_target_images = model(
    input_intrinsic_rotation = input_intrinsic_rotation,
    input_extrinsic_rotation = input_extrinsic_rotation,
    input_translation = input_translation,
    input_uniform_points = input_uniform_points,
    target_intrinsic_rotation = target_intrinsic_rotation,
    target_extrinsic_rotation = target_extrinsic_rotation,
    target_translation = target_translation,
    target_uniform_points = target_uniform_points,
    input_images = images,
)

Citations

@inproceedings{Jin2024LVSMAL,
    title   = {LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias},
    author  = {Haian Jin and Hanwen Jiang and Hao Tan and Kai Zhang and Sai Bi and Tianyuan Zhang and Fujun Luan and Noah Snavely and Zexiang Xu},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273507016}
}
@article{Zhang2024CamerasAR,
    title     = {Cameras as Rays: Pose Estimation via Ray Diffusion},
    author    = {Jason Y. Zhang and Amy Lin and Moneish Kumar and Tzu-Hsuan Yang and Deva Ramanan and Shubham Tulsiani},
    journal   = {ArXiv},
    year      = {2024},
    volume    = {abs/2402.14817},
    url       = {https://api.semanticscholar.org/CorpusID:267782978}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lvsm_pytorch-0.0.16.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

lvsm_pytorch-0.0.16-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file lvsm_pytorch-0.0.16.tar.gz.

File metadata

  • Download URL: lvsm_pytorch-0.0.16.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for lvsm_pytorch-0.0.16.tar.gz
Algorithm Hash digest
SHA256 696e54fb10b54b67583cebb70209525901c995ce85e5d69534fb3d9ca61d75a7
MD5 9cfb0629442aacf30c91d27a3d13ac96
BLAKE2b-256 80aa01e9457fec9f712ab7a61590eb789b5444750ad0b4343fc511e15ad7df36

See more details on using hashes here.

File details

Details for the file lvsm_pytorch-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for lvsm_pytorch-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 fc972a4ce49befcc32426653aa79241dc275958db158f8002fe8955cb0652327
MD5 697e77f4b41213a1457e9be9ef9c43d7
BLAKE2b-256 d4d3856e3e54fd56c8e549563923cbcdd185d37e7828f00a1263a99e7d8cf6f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page