M2PT - Pytorch
Project description
Multi-Modal Pathway Transformer
Implementation of M2PT in PyTorch from the paper: "Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities". PAPER LINK
Install
Citation
@misc{zhang2024multimodal,
title={Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities},
author={Yiyuan Zhang and Xiaohan Ding and Kaixiong Gong and Yixiao Ge and Ying Shan and Xiangyu Yue},
year={2024},
eprint={2401.14405},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
License
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
m2pt-0.0.1.tar.gz
(3.8 kB
view details)
Built Distribution
m2pt-0.0.1-py3-none-any.whl
(3.7 kB
view details)
File details
Details for the file m2pt-0.0.1.tar.gz
.
File metadata
- Download URL: m2pt-0.0.1.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfa358707cc68ab3aa2b53c46a612d8a9508d66f36dc51a6e68b90bd81b71092 |
|
MD5 | 45a3ab2e4f15c3c8ad0814deaf1c5877 |
|
BLAKE2b-256 | 87b271542aac674e58ed2606c499994cb451bb465e92f79d9822a230536136c2 |
File details
Details for the file m2pt-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: m2pt-0.0.1-py3-none-any.whl
- Upload date:
- Size: 3.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf57b2ba068b0247bdcbc62eb77ce9ab79d2b8722a6146b3d3101b2833dfff1e |
|
MD5 | 48a4ec7026e7c44a237a441b39372f46 |
|
BLAKE2b-256 | c4e965ae73d8a4b65d2f3d63421d6667adaa63a2a5494c12e5daa4b7dd12e31b |