Skip to main content

Materials Morphology Python Package

Project description

m2py: Materials Morphology Python Package

Contributors

  • Wesley Tatum, PhD Student at University of Washington MSE Department
  • Diego Torrejon, Staff Machine Learning Engineer at BlackSky
  • Patrick O’Neil, Director of Machine Learning and Artificial Intelligence at BlackSky

Requirements

You need Python 3.6 or later to work with m2py.

Installation

Through github:

Clone or download this repository

pip install -r requirements.txt

Through pip:

pip install m2py

Usage

At the moment, we are offering two introductory tutorials found under the tutorials directory. There is a basic tutorial showing the main processing capabilities of m2py. There's also an advanced tutorial showing how users can use current m2py capabilities to make them suitable for their own applications.

Background

SPM techniques have been pivotal in understanding surfaces, morphologies, and intermolecular interactions of matter from the atomic to millimeter scales. Probes interacting with the material surface produce 2-dimensional images of the topography with intensity scales representing any number of material properties (e.g. modulus, conductivity, or capacitance). In many experiments, multiple properties can be imaged simultaneously, producing a 3-dimensional stack of these images.

By utilizing different combinations of computer vision and machine learning techniques, m2py leverages differences in imaged material properties to recognize different material phases, as well as different domains and topographical features. First, outlier pixels or signals can be removed. Next, signals are compressed to only the most informative features via PCA. These signals can be deconvoluted via GMM, or some other semantic segmenter for phase labeling. Finally, an instance segmenter, such as Persistence Watershed Segmentation, clusters the phase-labeled pixels into domains, which receive another label.

Once labeled by m2py segmenters, quantitative descriptions of each domain and the total morphology are extracted and can be used to train supervised models to predict material properties or performance. Such supervised training has not been accessible to most SPM researchers, due to the labor-intensive nature of manual-labeling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

m2py-0.0.4.tar.gz (2.4 kB view details)

Uploaded Source

Built Distribution

m2py-0.0.4-py3-none-any.whl (23.7 kB view details)

Uploaded Python 3

File details

Details for the file m2py-0.0.4.tar.gz.

File metadata

  • Download URL: m2py-0.0.4.tar.gz
  • Upload date:
  • Size: 2.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.3.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.4

File hashes

Hashes for m2py-0.0.4.tar.gz
Algorithm Hash digest
SHA256 8f12869d1d395ac6ce84d729187742b8a8c2ec14fed47960d055b0e404575616
MD5 f2d5c0426aef749d79bde1da8e024752
BLAKE2b-256 f175cdff8aebe54db7e2551392c656433e6c4669d281df84e5f3cb632bcf7358

See more details on using hashes here.

File details

Details for the file m2py-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: m2py-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 23.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.3.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.4

File hashes

Hashes for m2py-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a0e71b3f2eeffdabb68d70bef62f4494e10192118e99a12b8d53bd4b4bb8d58f
MD5 c5e6f127278a177d2a1dac5e17fdf830
BLAKE2b-256 0e7d85577d84aa21453200e93557950d693bac7fd92e3a8cd19a5a549451761f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page