Skip to main content

Pipeline for searching and aligning contact maps for proteins, then running DeepFri's GCN.

Project description

🍳 Metagenomic-DeepFRI Stars

A pipeline for annotation of genes with DeepFRI, a deep learning model for functional protein annotation with Gene Ontology (GO) terms. It incorporates FoldComp databases of predicted protein structures for fast annotation of metagenomic gene catalogues.

🔍 Overview

Proteins perform most of the work of living cells. Amino acid sequence and structural features of proteins determine a wide range of functions: from binding specificity and conferring mechanical stability, to catalysis of biochemical reactions, transport, and signal transduction. DeepFRI is a neural network designed to predict protein function within the framework of the Gene Ontology (GO). The exponential growth in the number of available protein sequences, driven by advancements in low-cost sequencing technologies and computational methods (e.g., gene prediction), has resulted in a pressing need for efficient software to facilitate the annotation of protein databases. Metagenomic-DeepFRI addresses such need, building upon efficient libraries. It incorporates novel databases of predicted structures (AlphaFold, ESM-Fold, MIP, etc.) and improves runtimes of DeepFRI by 2-12 times!

📋 Pipeline stages

  1. Search proteins similar to query in PDB and supplied FoldComp databases with MMSeqs2.
  2. Find the best alignment among MMSeqs2 hits using PyOpal.
  3. Align target protein contact map to query protein with unknown structure.
  4. Run DeepFRI with structure if it was found in database, otherwise run DeepFRI with sequence only.

🛠️ Built With

🔧 Installation

  1. Clone repo locally
git clone https://github.com/bioinf-mcb/Metagenomic-DeepFRI
cd Metagenomic-DeepFRI
  1. Setup conda environment
conda env create --name deepfri --file environment.yml
conda activate deepfri
  1. Install mDeepFRI
pip install .

💡 Usage

1. Prepare structural database

The PDB database will be automatically downloaded and installed during first run of mDeepFRI. You can download additional databases from website. The app was tested with afdb_swissprot_v4. You can use different databases, but be mindful that computation time might increase exponentially with the size of the database.

2. Download models

Two versions of models available:

  • v1.0 - is the original version from DeepFRI publication.
  • v1.1 - is a version finetuned on AlphaFold models and Gene Ontology Uniprot annotations. To download models run command:
mDeepFRI get-models --output path/to/weights/folder -v {1.0 or 1.1}

3. Predict protein function & capture log

mDeepFRI predict-function -i /path/to/protein/sequences -d /path/to/foldcomp/database/ -w /path/to/deepfri/weights/folder -o /output_path 2> log.txt

The logging module writes output into stderr, so use 2> to redirect it to the file. Other available parameters can be found upon command mDeepFRI --help.

✅ Results

The output folder will contain:

  1. {database_name}.search_results.tsv
  2. metadata_skipped_ids_due_to_length.json - too long or too short queries (DeepFRI is designed to predict the function of proteins in the range of 60-1000 aa).
  3. query.mmseqsDB + index from MMSeqs2 search.
  4. results.tsv - a final output from the DeepFRI model.

Example output (results.tsv)

Protein GO_term/EC_numer Score Annotation Neural_net DeepFRI_mode DB_hit DB_name Identity
MIP_00215364 GO:0016798 0.218 hydrolase activity, acting on glycosyl bonds gcn mf MIP_00215364 mip_rosetta_hq 0.933
1GVH_1 GO:0009055 0.217 electron transfer activity gnn mf AF-P24232-F1-model_v4 afdb_swissprot_v4 1.0
unaligned 3.2.1.- 0.215 3.2.1.- cnn ec nan nan nan

This is an example of protein annotation with the AlphaFold database.

  • Protein - the name of the protein from the FASTA file.
  • GO_term/EC_numer - predicted GO term or EC number (dependent on mode)
  • Score - DeepFRI score, translates to model confidence in prediction. Details in publication.
  • Annotation - annotation from ontology
  • Neural_net - type of neural network used for prediction (gcn = Graph Convolutional Network; cnn = Convolutional Neural Network). GCN (Graph Convolutional Network) is employed when structural information is available in the database, allowing for generally more confident predictions.
  • DeepFRI_mode:
    mf = molecular_function
    bp = biological_process
    cc = cellular_component
    ec = enzyme_commission
    

⚙️Features

1. Prediction modes

The GO ontology contains three subontologies, defined by their root nodes:

  • Molecular Function (MF)
  • Biological Process (BP)
  • Cellular Component (CC)
  • Additionally, Metagenomic-DeepFRI v1.0 is able to predict Enzyme Comission number (EC). By default, the tool makes predictions in all 4 categories. To select only a few pass the parameter -p or --processing-modes few times, i.e.:
mDeepFRI predict-function -i /path/to/protein/sequences -d /path/to/foldcomp/database/ -w /path/to/deepfri/weights/folder -o /output_path -p mf -p bp

2. Hierarchical database search

Different databases have a different level of evidence. For example, PDB structures are real experimental structures, thus they are considered to be the data of highest quality. Therefore new proteins are first queried against PDB. Computational predictions differ by quality, i.e. AlphaFold predictions are often more accurate than ESMFold predictions. We provide an opporunity to search multiple databases in a hierarchical manner. For example, if you want to search AlphaFold database first, and then ESMFold, you can pass the parameter -d or --databases few times, i.e.:

mDeepFRI predict-function -i /path/to/protein/sequences -d /path/to/alphafold/database/ -d /path/to/another/esmcomp/database/ -w /path/to/deepfri/weights/folder -o /output_path

3. Temporary files

The first run of mDeepFRI with the database will create temporary files, needed for the pipeline. If you don't want to keep them for the next run add flag --remove-intermediate.

4. CPU / GPU utilization

If argument threads is provided, the app will parallelize certain steps (alignment, contact map alignment, functional annotation). GPU is often used to speed up neural networks. Metagenomic-DeepFRI takes care of this and, if CUDA is installed on your machine, mDeepFRI will automatically use it for prediction. If not, the model will use CPUs. Technical tip: Single instance of DeepFRI on GPU requires 2GB VRAM. Every currently available GPU with CUDA support should be able to run the model.

🔖 Citations

Metagenomic-DeepFRI is a scientific software. If you use it in an academic work, please cite the papers behind it:

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

📋 Changelog

This project adheres to Semantic Versioning and provides a changelog in the Keep a Changelog format.

⚖️ License

This library is provided under the The 3-Clause BSD License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mDeepFRI-1.1.1.tar.gz (29.7 kB view details)

Uploaded Source

Built Distributions

mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

mDeepFRI-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mDeepFRI-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

mDeepFRI-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mDeepFRI-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mDeepFRI-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mDeepFRI-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mDeepFRI-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mDeepFRI-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mDeepFRI-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

mDeepFRI-1.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

mDeepFRI-1.1.1-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mDeepFRI-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mDeepFRI-1.1.1.tar.gz.

File metadata

  • Download URL: mDeepFRI-1.1.1.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for mDeepFRI-1.1.1.tar.gz
Algorithm Hash digest
SHA256 14d7ca3badf8bd18078317341092265a1725cb1f0c5e4aa4eaae1549df3b65a5
MD5 26b965a234e2a33ccc50fe1c2a9d4093
BLAKE2b-256 3e4c5cf31758b163d70d5a16672a43b2b70edf5b6c3a98a29a9e73f90c1ef045

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1884ad331a0070e7506d86bfe1492c1bb9596d46d6eff275d05a56a1faa9d1a
MD5 cce6210e17afdf2f553d2a4f4de3debb
BLAKE2b-256 7606a58e6335d29e02b052c1df43400b8c6eab2c79b2eed26a7dc40fb90b4951

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73f1b1a8c7a3170d953f071d0e5c4d38cbe67b0283ab60113ffb0310ef212c1f
MD5 43bf25f549b9ca908e0c93be63ed2c4f
BLAKE2b-256 0d6c875ff6cb87ad70e61e68e2f943ad063e484821cd12a29223a4a69c79f648

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 209de13b518ea3a8a1a357e6b95217afbd2e65df829de9925b42a9de0520fdda
MD5 71c849a1865ad80d710e17c514c63574
BLAKE2b-256 5d176cb3cf0e992808dfce6821c2d081b35fdd1a37c502fca4187a8e8ffd531e

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a02f1b9ea0505e039e080ec3f6162617fcf609d812db4448c3d014dd1e54c9f8
MD5 2d1728c9b419533a91e618ffd9a2749d
BLAKE2b-256 46f04d2f6c91877b73a8b0b2b5060dcf8be1b55f05dbdcb0a0bb3b31ca50d06a

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e732a541b90276a664f2f134d74554e1fcd6a5b0bff2f1d0e133d9de09d5dd76
MD5 d864608bf9047c495bf14b65f2a75f00
BLAKE2b-256 9ee483d60f7ca5ec8eb7eaeb76cf12e6a01dc2c73de6b90897105eb9ec900a15

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97e05788e3b8e490b77a8a77e9be54114c0e9555f645f882029620ff68ca1e08
MD5 0b6ecd39ea49e4f40f25adfbfa72c878
BLAKE2b-256 922a9fac5796caf1b26230ffc3da78e0c74d32107dd7b46241330aba6c838177

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d73a6985f2a9c32e205a57696d812042438d1575330247dac075bd9e4b3e72f
MD5 0640754c402b673b5fa438090f174285
BLAKE2b-256 da3cf72ae43af1a026626212c9d2cf2ca2528ca8dbf73ecb6d33514a90060afa

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7237d77fa5d1db19a7fa1faf76bcf65b26dde255f76913753e5c2dd6309708d1
MD5 209adc610959408bea3b7a920bac96bb
BLAKE2b-256 1589f45d097055f09e3d84cd5303e8204d96292e4ef8daae8939d23a97586ab3

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12e59e2f45e43253ba98e6e832a58afb910f83a0ca59c1721a1700bdac033826
MD5 4fad470b8fa40ab1ca7890f7f5901bd2
BLAKE2b-256 175bbaca3ed739f3453da7c95ebd1811b2624b6fcbce85804e370b0a902591d0

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a1afdd14a651a0049b816c1ec29036a64c2f3dcb48ff0ce121569e01fb2eb27
MD5 9d31c243d5576fd292fc95fdbb114909
BLAKE2b-256 a0abe6bee7ee6b72eb3f17030415d5837d1e9ef2358850ce93eda56f2c7307d9

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f9f36d744fe13d511d103321716b1f494f969e37ba20838654024a448e85b51
MD5 d91da352e4ddcad28ef92ed5ee9b2881
BLAKE2b-256 f42db2f0c93c1cd67ce4e8a92679f5251722ffff8c2ec28bb703841d0da2def5

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93536ae73ec9ee0bc243c0104fe63e5ca56e61d9451b22eda7e3db289670b9f3
MD5 aa94d36dbf67c443cd945c5dd0d93932
BLAKE2b-256 c3c53c861491f779b8b928bec2b4313926d7b96d8d8e4aa45f71539f7869807b

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 974ea5cff8b9bde1c68e5189c23671ea785f0d0e3cdafa4a0cb88d82fc0cb74f
MD5 5a8c2eba522ee38e88834c97f32aacde
BLAKE2b-256 2802fb52e1d76f992cd72d92e605198ed528a6ac8b652c15ab293684a69f5bf9

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cabca7413982aeff0df802694a05f351c93717e7fa77fe3dd0577467ad9c7b78
MD5 faddbc10c0d2a11663f8276b1351567c
BLAKE2b-256 aededbb8bba94ca57c649d7a5268a2c35a47acc479a2bc6d8fe5eed7900b8a74

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0dad2481d82c15413654cda2fb972ecbff59c7611def736986211f6c6f950d15
MD5 75d89b0c6aa13b4b44b343c6cfba50cc
BLAKE2b-256 9557c2a9b7d79d005d589be434bf1281a3c53490fac61a7e09ebcbac7b1b1541

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6fa0edb248c2a1ab7ceafa4c380ec1cc54b8169819c5ab94da54a5710292b1a
MD5 6cca4933d4c3c59472eead1f57036ed0
BLAKE2b-256 37515122ab5363467128ecf10fed6370185528dbc19e864dff1d4b37c85796e6

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c5022d6adfc2daea25ebb639ed1a7ceb96414d67c962fe3308cbce69d321549
MD5 c310e96a884943ae02e12806f3745705
BLAKE2b-256 41ef0b90c0d9d3c63d3a2e4a6805f38860b1f8e8b3f9a7c726e5b61ed37af6e5

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5541f96c4dfaebd938756581dc5db0697de5321347e242cacb7f47c5aa0dc16b
MD5 2c51b5afae154cc94eaf5c25ed4e871b
BLAKE2b-256 a3fd4877bbce87318b9a8460a9496c1c81c41c8f2f380bbcb4f35a8bbc067864

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48e8566f8832ff056949eee4e7ffea308585c12345358acd0088f098f56b9f44
MD5 2216fa9977e22a183871336904beb10c
BLAKE2b-256 48da1697fb02251607125887f9df0f972389c25a4df59d8e432f92447eba5ae4

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ff5952703abc572892de2df63dcacc281739009604a326683badd697ff47ef5
MD5 d020ef7ac85bfa301e2eb802f56b18e5
BLAKE2b-256 adf95683ab8603da5aa6a6309f48e9eae0606be73792d4b0ee41a7a42eec5467

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0d97f62d0609dd7bee064f36e4086b1ddf1085f1c0e3260af6f75e075323d81
MD5 7d07fe9a627ab6e55cac8f12a47d7ec1
BLAKE2b-256 5f73878ad2ba3c783271833cf8dcae60f17fb6047169c2263840d4a59bddacf8

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4be45ef66368c8be3dbc12783a20a30e90b8aa6c73a101813a0693b1cb1b5dcd
MD5 8796a800dcb96cbcc3156eeff4081406
BLAKE2b-256 67aff09b6454c566da9314d44255e7e1fadc3baab65b47938de2dad4d5e2e2d5

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 813a47a5b469027979f6a539152b6c8a40ad78ee9041d6ed7a5e54904aec4881
MD5 ce966e52f9c14ebff435b1dee5391da3
BLAKE2b-256 af8ec89432be54f8bf8a5d228fae929c3435db0ae0e59b03abd5b3c383b0a165

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73bce9ae462b5efb7de6f0f1523d91386beb056e288a2ef2af472a3af31b3cc6
MD5 01652d4253b068d820555365aef449e6
BLAKE2b-256 9af67f585f0770545b1ec54a88425cf10ea7aeb79a5276c2ebc8d798996a16c1

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22ba9256810f518bd3177b9f3daee0028c229818e79ba8f045058e039fbe65bd
MD5 f2b094982b75f4315684e1320e183413
BLAKE2b-256 391abf9de6975a5ad3e71811c074b34d294aa9ea53e75aa4ddf9e4b9a9cf4fa6

See more details on using hashes here.

File details

Details for the file mDeepFRI-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mDeepFRI-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba417cc0bbbf5402ddcb7f336a6ae0fff786aba1e51cfda050f87e1a9e2b003b
MD5 c57e648dd6a399f94ec63df8aa7f6b4e
BLAKE2b-256 b20e61b780210acdc220e9854f2d8233e5cf82ee44d2f7325ae1649879efc9b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page