mRNAid: experimentally validated open-source tool for optimization and visualisation of mRNA molecules
Project description
mRNAid: mRNA optimization tool
mRNAid is an experimentally validated open-source tool for optimization and visualisation of mRNA molecules. It features different optimization strategies based on user preferences.
mRNAid is available at: https://mrnaid.dichlab.org
More information about the tool and experiments performed for its evaluation is available in the following publication:
Nikita Vostrosablin, Shuhui Lim, Pooja Gopal, Kveta Brazdilova, Sushmita Parajuli, Xiaona Wei, Anna Gromek, Martin Spale, Anja Muzdalo, Constance Yeo, Joanna Wardyn, Petr Mejzlik, Brian Henry, Anthony W Partridge and Danny A. Bitton: mRNAid, an Open-Source Platform for Therapeutic mRNA Design and Optimization Strategies, 2022
You can find brief manual on how to use the tool here.
Command-line interface setup
Install mRNAid with pip:
pip install mRNAid
See help using:
mrnaid optimize --help
Example:
mrnaid optimize \
--output example.json \
--optimization-criterion codon_usage \
--five-end ATG \
--three-end CGG \
--input-mRNA AGCAGAGAAGGCGGAAGCAGTGGCGTCCGCAGCTGGGGCTTGGCCTGCGGGCGGCCAGCGAAGGTGGCGAAGGCTCCCACTGGATCCAGAGTTTGCCGTCCAAGCAGCCTCGTCTCGGCGCGCAGTGTCTGTGTCCGTCCTCTACCAGCGCCTTGGCTGAGCGGAGTCGTGCGGTTGGTGGGGGAGCCCTGCCCTCCTGGTTCGGCCTCCCCGCGCACTAGAACGATCATGAACTTCTGAAGGGACCCAGCTTTCTTTGTGTGCTCCAAGTGATTTGCACAAATAATAATATATATATTTATTGAAGGAGAGAATCAGAGCAAGTGATAATCAAGTTACTATGAGTCTGCTAAACTGTGAAAACAGCTGTGGATCCAGCCAGTCTGAAAGTGACTGCTGTGTGGCCATGGCCAGCTCCTGTAGCGCTGTAACAAAAGATGATAGTGTGGGTGGAACTGCCAGCACGGGGAACCTCTCCAGCTCATTTATGGAGGAGATCCAGGGATATGATGTAGAGTTTGACCCACCCCTGGAAAGCAAGTATGAATGCCCCATCTGCTTGATGGCATTACGAGAAGCAGTGCAAACGCCATGCGGCCATAGGTTCTGCAAAGCCTGCATCATAAAATCAATAAGGGATGCAGGTCACAAATGTCCAGTTGACAATGAAATACTGCTGGAAAATCAACTATTTCCAGACAATTTTGCAAAACGTGAGATTCTTTCTCTGATGGTGAAATGTCCAAATGAAGGTTGTTTGCACAAGATGGAACTGAGACATCTTGAGGATCATCAAGCACATTGTGAGTTTGCTCTTATGGATTGTCCCCAATGCCAGCGTCCCTTCCAAAAATTCCATATTAATATTCACATTCTGAAGGATTGTCCAAGGAGACAGGTTTCTTGTGACAACTGTGCTGCATCAATGGCATTTGAAGATAAAGAGATCCATGACCAGAACTGTCCTTTGGCAAATGTCATCTGTGAATACTGCAATACTATACTCATCAGAGAACAGATGCCTAATCATTATGATCTAGACTGCCCTACAGCCCCAATTCCATGCACATTCAGTACTTTTGGTTGCCATGAAAAGATGCAGAGGAATCACTTGGCACGCCACCTACAAGAGAACACCCAGTCACACATGAGAATGTTGGCCCAGGCTGTTCATAGTTTGAGCGTTATACCCGACTCTGGGTATATCTCAGAGGTCCGGAATTTCCAGGAAACTATTCACCAGTTAGAGGGTCGCCTTGTAAGACAAGACCATCAAATCCGGGAGCTGACTGCTAAAATGGAAACTCAGAGTATGTATGTAAGTGAGCT
# See all arguments using mrnaid optimize --help
The results will be stored in the output JSON file, see example here.
You can also invoke mRNAid directly from Python:
from mrnaid import optimize
optimize(
input_mrna='AGCAGAGAAGGCGGAAGCAGTGGCGTCCGCAGCTGGGGCTTGGCCTGCGGGCGGCCAGCGAAGGTGGCGAAGGCTCCCACTGGATCCAGAGTTTGCCGTCCAAGCAGCCTCGTCTCGGCGCGCAGTGTCTGTGTCCGTCCTCTACCAGCGCCTTGGCTGAGCGGAGTCGTGCGGTTGGTGGGGGAGCCCTGCCCTCCTGGTTCGGCCTCCCCGCGCACTAGAACGATCATGAACTTCTGAAGGGACCCAGCTTTCTTTGTGTGCTCCAAGTGATTTGCACAAATAATAATATATATATTTATTGAAGGAGAGAATCAGAGCAAGTGATAATCAAGTTACTATGAGTCTGCTAAACTGTGAAAACAGCTGTGGATCCAGCCAGTCTGAAAGTGACTGCTGTGTGGCCATGGCCAGCTCCTGTAGCGCTGTAACAAAAGATGATAGTGTGGGTGGAACTGCCAGCACGGGGAACCTCTCCAGCTCATTTATGGAGGAGATCCAGGGATATGATGTAGAGTTTGACCCACCCCTGGAAAGCAAGTATGAATGCCCCATCTGCTTGATGGCATTACGAGAAGCAGTGCAAACGCCATGCGGCCATAGGTTCTGCAAAGCCTGCATCATAAAATCAATAAGGGATGCAGGTCACAAATGTCCAGTTGACAATGAAATACTGCTGGAAAATCAACTATTTCCAGACAATTTTGCAAAACGTGAGATTCTTTCTCTGATGGTGAAATGTCCAAATGAAGGTTGTTTGCACAAGATGGAACTGAGACATCTTGAGGATCATCAAGCACATTGTGAGTTTGCTCTTATGGATTGTCCCCAATGCCAGCGTCCCTTCCAAAAATTCCATATTAATATTCACATTCTGAAGGATTGTCCAAGGAGACAGGTTTCTTGTGACAACTGTGCTGCATCAATGGCATTTGAAGATAAAGAGATCCATGACCAGAACTGTCCTTTGGCAAATGTCATCTGTGAATACTGCAATACTATACTCATCAGAGAACAGATGCCTAATCATTATGATCTAGACTGCCCTACAGCCCCAATTCCATGCACATTCAGTACTTTTGGTTGCCATGAAAAGATGCAGAGGAATCACTTGGCACGCCACCTACAAGAGAACACCCAGTCACACATGAGAATGTTGGCCCAGGCTGTTCATAGTTTGAGCGTTATACCCGACTCTGGGTATATCTCAGAGGTCCGGAATTTCCAGGAAACTATTCACCAGTTAGAGGGTCGCCTTGTAAGACAAGACCATCAAATCCGGGAGCTGACTGCTAAAATGGAAACTCAGAGTATGTATGTAAGTGAGCT',
five_end='ATG',
three_end='CGG',
optimization_criterion='codon_usage',
)
See mrnaid/cli/optimize.py for all available parameters.
See notebooks/01_mRNAid_example_usage.ipynb for usage and output format example.
Local web server setup
If you don't want to use public server you can install this tool locally on your machine.
1. Using docker-compose
The easiest way to run the tool locally is to use docker
. You will have to install docker first and it should either
contain docker-compose
utility as a part of the distribution or you will need to
install it separately.
Navigate to the project folder and execute:
docker-compose up --build
The tool will be available at http://localhost/
2. Without docker
To be able to run the tool without docker
you will need to run frontend and backend separately.
Backend
You need Conda or one of the alternatives (Miniconda, Miniforge) being installed.
First, navigate to the ./mrnaid/backend/flask_app/
directory and execute following commands:
cd ./mrnaid/backend/flask_app/
- Create a new virtual environment:
make env-create
- Install redis database
make redis-install
-
In separate terminals execute following commands:
- Start redis server:
make redis-run
- Start uwsgi server:
make uwsgi-run
- Start celery:
make celery-run
- Start redis server:
-
After these steps are executed, the job submission is available at the "optimize" API url: http://localhost/api/v1/optimize. Example of the json submitted to the "optimize" end point:
{
"config": {
"avoided_motifs": ["EcoRI", "UUU"],
"codon_usage_frequency_threshold": 0.1,
"max_GC_content": 0.9,
"min_GC_content": 0.5,
"GC_window_size": 100,
"organism": "m_musculus",
"entropy_window": 30,
"number_of_sequences": 2
},
"dinucleotides": false,
"match_codon_pair": false,
"uridine_depletion": true,
"CAI": false,
"precise_MFE_algorithm": true,
"file_name": "test",
"sequences": {
"five_end_flanking_sequence": "UGAAUUCAGCAAUCU",
"gene_of_interest": "AAUCAAAUAGGGUUAAGUCUAGGAUUGUUAGUCUGCUAAGGUCUGCAGUUACUGUGUCUACUGAUGAUAGUUCGCAUUGACAAU",
"three_end_flanking_sequence": "GC"
}
}
- The job execution results are available at: http://localhost/api/v1/status/task-id, where
task-id
should be replaced with actual task id received after the request is submitted to the "optimize" API
Running the tests
To be able to execute tests for backend with pytest, you need to set up following environmental variables in the corresponding environment:
- PYTHONPATH=..:../common:../flask_app
- LOG_FILE=../flask_app/logs/logs.log
- BACKEND_OBJECTIVES_DATA=../common/objectives/data
Tests can be found in backend/tests/
directory
Frontend
Install Node.js and Nginx web server.
- Navigate to
frontend
directory - Build a package:
npm ci && npm run build
- Remove default nginx configurations from nginx system directory
# location may vary based on your system and installation
rm /etc/nginx/conf.d/default.conf
- Replace deleted configs with custom ones
# target location may vary based on your system and installation
cp ./config/nginx.conf /etc/nginx/conf.d/
- Move build files to the corresponding nginx directory
cp -R ./build/* /usr/share/nginx/html
- Restart nginx web server
Contributing
mRNAid is an open platform, please propose your changes and improvements. This can be done through the Issues tab.
License
Released under MIT License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mRNAid-1.0.0.tar.gz
.
File metadata
- Download URL: mRNAid-1.0.0.tar.gz
- Upload date:
- Size: 329.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a40c195d85cd787dcf384d8baeafe4821f1127615c850c306e98bba948ee68da |
|
MD5 | 4e90e46d8df2b7be323a62594d5c6227 |
|
BLAKE2b-256 | 6895791e89cfa41d28daf69d4da8747b7a19b2e0f9fb9c81304bc69ecc6ffdba |
File details
Details for the file mRNAid-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: mRNAid-1.0.0-py3-none-any.whl
- Upload date:
- Size: 358.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18b69f3c58cf313dcf58a3c9244edb8b960d3801eb7568dbb2819cad7064b154 |
|
MD5 | 006ec2d6bc6255f0d51acc32c88f84f2 |
|
BLAKE2b-256 | 6fc9b919a292c69480ad12c7a784c32bc40816781b6928b48d32ca0488097064 |