Skip to main content

Multi-Agent Accelerator for Data Science (MAADS): Transactional Machine Learning

Project description

Multi-Agent Accelerator for Data Science Using Transactional Machine Learning (MAADSTMLMEDIA)

Revolutionizing Data Stream Science with Transactional Machine Learning

Overview

MAADSTMLMEDIA allows users to extract text from images, audio and video.

Compatibility - Python 3.7 or greater - Minimal Python skills needed

Copyright

  • Author: Sebastian Maurice, PhD

Installation

  • At the command prompt write: pip install maadstmlmedia

  • viperimagetotext

    • Extracts text from images like PNG, JPG, etc., which can then be streamed to kafka.
  • viperaudiototext

    • Extracts text from audio files like WAV, etc., which can then be streamed to kafka.
  • vipervideototext

    • Extracts text from video files like MP4, etc., which can then be streamed to kafka.

First import the Python library.

import maadstmlmedia

1. maadstmlmedia.viperimagetotext(imagefilename)

Parameters: Extract text from images.

imagefilename : string, required

  • Image filename like PNG, JPG etc.

RETURNS: Text in image.

2. maadstmlmedia.vipervideototext(videofilename)

Parameters: Extract text from video.

videofilename : string, required

  • Video filename like MP4 etc.

RETURNS: Text in video.

3. maadstmlmedia.viperaudiototext(audiofilename)

Parameters: Extract text from audio

audiofilename : string, required

  • Audio filename like WAV etc.

RETURNS: Text in audio.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maadstmlmedia-1.2.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

maadstmlmedia-1.2-py3-none-any.whl (32.6 kB view details)

Uploaded Python 3

File details

Details for the file maadstmlmedia-1.2.tar.gz.

File metadata

  • Download URL: maadstmlmedia-1.2.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for maadstmlmedia-1.2.tar.gz
Algorithm Hash digest
SHA256 145f16c80a8c78f4aa49c43c8f2e0174f7174035ba3d3046ac3dfcd19334918e
MD5 d5b0a07667e1ba4fa98a7512c931cd5d
BLAKE2b-256 8e088ff06104255f0ad46f44411b67e47078e6b197b56477e82c424fdb3301a1

See more details on using hashes here.

File details

Details for the file maadstmlmedia-1.2-py3-none-any.whl.

File metadata

  • Download URL: maadstmlmedia-1.2-py3-none-any.whl
  • Upload date:
  • Size: 32.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for maadstmlmedia-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f7b0d70975858ff48c74a6da3886ca6106fc7a0b299f167a1f16af8d92735e32
MD5 2f399eed41527db1763d231f0513b19e
BLAKE2b-256 bb5bd598162a116c6e53f84c1d54c1dba569db1080f57adeff7f6053561e7bea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page