Skip to main content

Reinforcement learning library

Project description



Automatic, Readable, Reusable, Extendable

Machin is a reinforcement library designed for pytorch.


Build status

Platform Status
Linux Jenkins build
Windows Windows build

Supported Models


Anything, including recurrent networks.

Supported algorithms


Currently Machin has implemented the following algorithms, the list is still growing:

Single agent algorithms:

Multi-agent algorithms:

Immitation learning algorithms (Behavioral Cloning, Inverse RL, GAIL)

Massively parallel algorithms:

Enhancements:

Algorithms to be supported:

Features


1. Automatic

Starting from version 0.4.0, Machin now supports automatic config generation, you can get a configuration through:

python -m machin.auto generate --algo DQN --env openai_gym --output config.json

And automatically launch the experiment with pytorch lightning:

python -m machin.auto launch --config config.json

2. Readable

Compared to other reinforcement learning libraries such as the famous rlpyt, ray, and baselines. Machin tries to just provide a simple, clear implementation of RL algorithms.

All algorithms in Machin are designed with minimial abstractions and have very detailed documents, as well as various helpful tutorials.

3. Reusable

Machin takes a similar approach to that of pytorch, encasulating algorithms, data structures in their own classes. Users do not need to setup a series of data collectors, trainers, runners, samplers... to use them, just import.

The only restriction placed on your models is their input / output format, however, these restrictions are minimal, making it easy to adapt algorithms to your custom environments.

4. Extendable

Machin is built upon pytorch, it and thanks to its powerful rpc api, we may construct complex distributed programs. Machin provides implementations for enhanced parallel execution pools, automatic model assignment, role based rpc scaling, rpc service discovery and registration, etc.

Upon these core functions, Machin is able to provide tested high-performance distributed training algorithm implementations, such as A3C, APEX, IMPALA, to ease your design.

5. Reproducible

Machin is weakly reproducible, for each release, our test framework will directly train every RL framework, if any framework cannot reach the target score, the test will fail directly.

However, currently, the tests are not guaranteed to be exactly the same as the tests in original papers, due to the large variety of different environments used in original research papers.

Documentation


See here. Examples are located in examples.

Installation


Machin is hosted on PyPI. Python >= 3.6 and PyTorch >= 1.6.0 is required. You may install the Machin library by simply typing:

pip install machin

You are suggested to create a virtual environment first if you are using conda to manage your environments, to prevent PIP changes your packages without letting conda know.

conda create -n some_env pip
conda activate some_env
pip install machin

Note: Currently only a fraction of all functions is supported on platforms other than linux (mainly distributed algorithms), to test whether the code is running correctly, you can run the corresponding test script for your platform in the root directory:

run_win_test.bat
run_linux_test.sh
run_macos_test.sh

Some errors may occur due to incorrect setup of libraries, make sure you have installed graphviz etc.

Contributing


Any contribution would be great, don't hesitate to submit a PR request to us! Please follow the instructions in this file.

Issues


If you have any issues, please use the template markdown files in .github/ISSUE_TEMPLATE folder and format your issue before opening a new one. We would try our best to respond to your feature requests and problems.

Citing


We would be very grateful if you can cite our work in your publications:

@misc{machin,
  author = {Muhan Li},
  title = {Machin},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/iffiX/machin}},
}

Roadmap


Please see Roadmap for the exciting new features we are currently working on!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

machin-0.4.2.tar.gz (136.3 kB view details)

Uploaded Source

Built Distribution

machin-0.4.2-py3-none-any.whl (181.5 kB view details)

Uploaded Python 3

File details

Details for the file machin-0.4.2.tar.gz.

File metadata

  • Download URL: machin-0.4.2.tar.gz
  • Upload date:
  • Size: 136.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.10

File hashes

Hashes for machin-0.4.2.tar.gz
Algorithm Hash digest
SHA256 5743ed661d3e0efb5808b0bdf9cbcaf42b380cfd05806d0a6b24c6053c446cfd
MD5 85f46aa01a5ace51a35060ddbfc50844
BLAKE2b-256 32ee59cacaca086cd7a7729db5a0f419f7c4870ac57c1d30d9f12fdec9c9295f

See more details on using hashes here.

File details

Details for the file machin-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: machin-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 181.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.10

File hashes

Hashes for machin-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 18e1e5455a11d35122f24f009ee08cee8ec2d11f1bc79d2d421ab425ff550bab
MD5 dabb357ee73be3ad68e33c76d78950b3
BLAKE2b-256 bdaab3b1eb50f8365ac7d746af9a4c6d1fa52dc71e0c673dc66776f1e8e4d67d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page