Skip to main content

It Is All About Matching Data -- Robust and Informed LiDAR Odometry

Project description

GitHub Repo stars PyPI - Version PyPI - Downloads

MAD-ICP

It Is All About Matching Data -- Robust and Informed LiDAR Odometry

Accepted RA-L 2024

Preprint


Install using pip

You can download/install MAD-ICP using pip

pip install mad-icp

Usage

We provide a Python launcher for Rosbag1, Rosbag2, and KITTI binary formats. The dataset configuration is important for the sensor characteristics and extrinsic information (typically, ground truths are not expressed in the LiDAR frame). In configurations/datasets/dataset_configurations.py we provide configurations for many datasets.

The internal parameters (used by default) are stored in configurations/mad_params.py. All the experiments have been run with this same set. You can specify a new set in configurations/mad_params.py and use it with the option --mad-icp-params.

Both the options --dataset-config and --mad-icp-params also accept .cfg files like those in configurations.

To run the pipeline, choose the appropriate dataset configuration (kitti for this example) and type:

mad_icp --data-path /input_dir/ \
        --estimate-path /output_dir/ \
        --dataset-config kitti

Our runner directly saves the odometry estimate file in KITTI format (homogenous matrix row-major 12 scalars); soon, we will provide more available formats like TUM.

Our pipeline is anytime realtime! You can play with parameters num_keyframes and num_cores and, if you have enough computation capacity, we suggest increasing these (we run demo/experiments with num_keyframes=16 and num_cores=16).

Data associtation and registration tools

If you want to use our MAD-tree to perform nearest neighbor or use MAD-ICP to perform registration between two point clouds, here few easy examples.


Building from source

Building is tested by our CI/CD pipeline for Ubuntu 20.04 and Ubuntu 22.04 (using g++).

The following external dependencies are required.

Dependency Version(s) known to work
Eigen 3.3
OpenMP
pybind11
yaml (optional for C++ apps)

If your system lacks any dependency (except for OpenMP) we download local copies using FetchContent. If you want to build and install the package, assuming you're inside the repository, you can use pip as follows:

pip install .

Moreover, you can build the C++ library (along with the pybinds) by typing:

mkdir build && cd build && cmake ../mad_icp && make -j

Building and Running C++ Apps [Optional]

If you want to avoid Python, we provide the bin_runner C++ executable (located in mad_icp/apps/cpp_runners/bin_runner.cpp) that accepts binary cloud format (KITTI, Mulran, etc.). You can build the executable using

mkdir build && cd build && cmake -DCOMPILE_CPP_APPS=ON ../mad_icp && make -j

And run

cd build/apps/cpp_runners
./bin_runner -data_path /path_to_bag_folder/ \
             -estimate_path /path_to_estimate_folder/ \
             -dataset_config ../../../mad_icp/configurations/datasets/kitti.cfg \
             -mad_icp_config ../../../mad_icp/configurations/default.cfg 

[!IMPORTANT] If running on the KITTI dataset, enable the flag -kitti for KITTI scan correction (not documented anywhere). We do not (currently) provide a viewer for this executable.

What is missing?

  • ROS/ROS2 optional dependencies

Cite us

If you use any of this code, please cite our paper:

@article{ferrari2024mad,
  title={MAD-ICP: It Is All About Matching Data--Robust and Informed LiDAR Odometry},
  author={Ferrari, Simone and Di Giammarino, Luca and Brizi, Leonardo and Grisetti, Giorgio},
  journal={IEEE Robotics and Automation Letters},
  year={2024},
  doi={10.1109/LRA.2024.3456509}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mad_icp-0.0.8.tar.gz (21.3 MB view details)

Uploaded Source

File details

Details for the file mad_icp-0.0.8.tar.gz.

File metadata

  • Download URL: mad_icp-0.0.8.tar.gz
  • Upload date:
  • Size: 21.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mad_icp-0.0.8.tar.gz
Algorithm Hash digest
SHA256 81ae68d3e6c465c0a325fa31c512d60a56ddaa851920b8b6168701879eab47be
MD5 501288f625eb7a9445e382d06b35013a
BLAKE2b-256 9a2cc22c32ea3de200251e6f18ea010b94fbfd89cf86ff04492da0a91a7d6e67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page