Skip to main content

A general purpose PyTorch Optimizer

Project description

MADGRAD Optimization Method

A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

Documentation availiable at https://madgrad.readthedocs.io/en/latest/.

pip install madgrad

Try it out! A best-of-both-worlds optimizer with the generalization performance of SGD and at least as fast convergence as that of Adam, often faster. A drop-in torch.optim implementation madgrad.MADGRAD is provided, as well as a FairSeq wrapped instance. For FairSeq, just import madgrad anywhere in your project files and use the --optimizer madgrad command line option, together with --weight-decay, --momentum, and optionally --madgrad_eps.

The madgrad.py file containing the optimizer can be directly dropped into any PyTorch project if you don't want to install via pip. If you are using fairseq, you need the acompanying fairseq_madgrad.py file as well.

Things to note:

  • You may need to use a lower weight decay than you are accustomed to. Often 0.
  • You should do a full learning rate sweep as the optimal learning rate will be different from SGD or Adam. Best LR values we found were 2.5e-4 for 152 layer PreActResNet on CIFAR10, 0.001 for ResNet-50 on ImageNet, 0.025 for IWSLT14 using transformer_iwslt_de_en and 0.005 for RoBERTa training on BookWiki using BERT_BASE. On NLP models gradient clipping also helped.

Mirror MADGRAD

The mirror descent version of MADGRAD is also included as madgrad.MirrorMADGRAD. This version works extremely well, even better than MADGRAD, on large-scale transformer training. This version is recommended for any problem where the datasets are big enough that generalization gap is not an issue.

As the mirror descent version does not implicitly regularize, you can usually use weight decay values that work well with other optimizers.

Tech Report

Adaptivity without Compromise: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

We introduce MADGRAD, a novel optimization method in the family of AdaGrad adaptive gradient methods. MADGRAD shows excellent performance on deep learning optimization problems from multiple fields, including classification and image-to-image tasks in vision, and recurrent and bidirectionally-masked models in natural language processing. For each of these tasks, MADGRAD matches or outperforms both SGD and ADAM in test set performance, even on problems for which adaptive methods normally perform poorly.

@misc{defazio2021adaptivity,
      title={Adaptivity without Compromise: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization}, 
      author={Aaron Defazio and Samy Jelassi},
      year={2021},
      eprint={2101.11075},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Results

vision nlp

License

MADGRAD is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

madgrad-1.3.tar.gz (7.9 kB view details)

Uploaded Source

File details

Details for the file madgrad-1.3.tar.gz.

File metadata

  • Download URL: madgrad-1.3.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.3

File hashes

Hashes for madgrad-1.3.tar.gz
Algorithm Hash digest
SHA256 fef4b077185e540aabe95899600d655db10be23bcbfdaccf9818c2c6e435c18f
MD5 a346d364aa0cadea5e53dd6cfc37615e
BLAKE2b-256 18ea95435c2c4d55f51375468dfd1721d88a73f93991b765c5a04366d36472f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page