Skip to main content

Generate synthetic data for computer vision projects using copy-paste context-augmentation.

Project description

Magic Scissors banner

Magic Scissors ✂️

version downloads license python-version Colab

Generate synthetic data for computer vision using copy-paste context augmentation.

Magic Scissors is available as a Python package and a web application.

Installation

To install Magic Scissors, run the following command:

pip install magicscissors

Quickstart 🚀

To use Magic Scissors, you need two datasets:

  1. A dataset with object of interest;
  2. A dataset with backgrounds on which objects of interest can be pasted.

Both datasets should be formatted as COCO JSON. You can convert data between formats using Roboflow.

from magic_scissors import MagicScissors

data = MagicScissors(
    dataset_size=100,
    min_objects_per_image=1,
    max_objects_per_image=3,
    min_size_variance=2,
    max_size_variance=5,
    annotate_occlusion=0,
    working_dir="./",
    upload_to_roboflow=False,
    roboflow_api_key="",
    roboflow_workspace="",
    roboflow_project="",
)

# load data from COCO JSON files
data.load_backgrounds_from_coco()
data.load_objects_of_interest_from_coco()

# load data from Roboflow
data.download_objects_of_interest_from_roboflow(
    dataset_url=""
)
data.download_backgrounds_from_roboflow(
    dataset_url=""
)

# generate dataset and save to directory
data.generate_dataset()

Contributing 🏆

We would love your help improving Magic Scissors! Please see our contributing guide to get started. Thank you 🙏 to all our contributors!

License

This project is licensed under an MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

magic-scissors-0.1.0.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

magic_scissors-0.1.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file magic-scissors-0.1.0.tar.gz.

File metadata

  • Download URL: magic-scissors-0.1.0.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for magic-scissors-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0864be26e0165bf381481768084606957c616478b13500d298c55c2664cbbe32
MD5 1814b11cbcab38132fe8dfb4368d0b30
BLAKE2b-256 fd6a0a779f57ca992795ea5cff59028f2aa7ed176dedb7274cf9197740b21001

See more details on using hashes here.

File details

Details for the file magic_scissors-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for magic_scissors-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bba3cae1bec89345a82152df8a058fb187cdfad1112e06407483cd0b5c1909e3
MD5 85e429dee5162546624e0535b56e1078
BLAKE2b-256 c98b3c23bc7d04e8c482653c16fb0af323be9fff058127b3315e3c132af62a98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page