MultiGas package for internal use. A collaboration between CVGHM and USGS
Project description
magma-multigas
Python package for multigas sensor.
Installation
Make sure you have at least Python 3.10 installed. You can install the package using pip
pip install magma-multigas
How to use
Import the package first:
from magma_multigas import MultiGas
Then lets add all the required files. Please change the files location with your multi gas data. At the moment we are excluding the span
data files. Will add later in future development.
two_seconds = 'D:\\Projects\\magma-multigas\\input\\TANG_RTU_ChemData_Sec2.dat'
six_hours = 'D:\\Projects\\magma-multigas\\input\\TANG_RTU_Data_6Hr.dat'
one_minute = 'D:\\Projects\\magma-multigas\\input\\TANG_RTU_Wx_Min1.dat'
zero = 'D:\\Projects\\magma-multigas\\input\\TANG_RTU_Zero_Data.dat'
Initiate MultiGas module with the code below. This code will correct "NAN" data, and create a new file into your current poject directory. The default location is <your project directory>/output/normalize
.
multigas = MultiGas(
two_seconds=two_seconds,
six_hours=six_hours,
one_minute=one_minute,
zero=zero
)
By initiating the module, we can check the output after run the code.
💾 New file saved to D:\Projects\magma-multigas\output\normalize\TANG_RTU_ChemData_Sec2.dat
💾 New file saved to D:\Projects\magma-multigas\output\normalize\TANG_RTU_Data_6Hr.dat
💾 New file saved to D:\Projects\magma-multigas\output\normalize\TANG_RTU_Wx_Min1.dat
💾 New file saved to D:\Projects\magma-multigas\output\normalize\TANG_RTU_Zero_Data.dat
Slicing and export for specific time
We can filter the data we have by using the code below. At this example we will select data between start_date = 2024-05-17
and end_date = 2024-06-18
.
data_filtered = multigas.where_date_between(start_date='2024-05-17', end_date='2024-06-18').save(file_type='excel')
We can also save the filtering results. Only excel
,xls
,xlsx
and csv
are supported.
data_filtered.save(file_type='excel')
All files would be saved into <your project directory>/output/<file_type>
. You can also check the save location after run the save()
command.
✅ Data saved to: D:\Projects\magma-multigas\output\excel\two_seconds_2024-05-17_2024-06-18_TANG_RTU_ChemData_Sec2.xlsx
✅ Data saved to: D:\Projects\magma-multigas\output\excel\six_hours_2024-05-17_2024-06-18_TANG_RTU_Data_6Hr.xlsx
✅ Data saved to: D:\Projects\magma-multigas\output\excel\one_minute_2024-05-17_2024-06-18_TANG_RTU_Wx_Min1.xlsx
✅ Data saved to: D:\Projects\magma-multigas\output\excel\zero_2024-05-17_2024-06-18_TANG_RTU_Zero_Data.xlsx
Selecting Data
For now, this package only support 4 type of data.
two_seconds
six_hours
one_minute
zero
To working on specific dataset, we can do it like this. To choose two_seconds
data:
two_seconds_data = multigas.two_seconds
or:
two_seconds_data = multigas.select('two_seconds').get()
Both method will result the same. You can change the two_seconds
parameter with the available type of data.
Data Preview
After selecting, we can do a quick review by calling df
parameter:
two_seconds_data.df
For anyone not familiar with df
abbreviation, it's stand for dataframe. Just imagine it as an excel with header, but it is in python.
You can also see the columns name:
two_seconds_data.columns
It will show all the columns name:
Filtering
We can do fluent filtering data by using this code below. And it also supports chaining filtering.
filtered_two_seconds = (two_seconds_data
.select_columns(column_names=['H2O','CO2','SO2','H2S','S_total'])
.where_date_between(start_date='2024-06-12', end_date='2024-06-18')
.where('Status_Flag', '==', 0)
.where_values_between(column_name='SO2', start_value=-0.129, end_value=-0.127)
.where_values_between(column_name='H2O', start_value=-260, end_value=-228)
)
We can read the above code as is:
By using
two_seconds_data
, let's select specific columns, such as:H2O, CO2, SO2, S_Total
where theStatus_Flag
should have a0
value. And theSO2
columns must be between-0.129
and-0.127
. In additionH2O
values would be filtered between-260
and-228
.
To see the results, please run the get()
method:
filtered_two_seconds.get()
You can see the example of the results below. Here we only found 1 result based on our query filtering.
To check and count the results:
filtered_two_seconds.count()
Save Filtering Results
We can save it, using save_as()
method. You can change the file_type
parameter between excel
,xls
,xlsx
, or csv
.
filtered_two_seconds.save_as(file_type='excel')
You will get the information where your file is saved. By default, it should be in your output\<file_type>
directory. Here is the example of the output:
✅ Data saved to: D:\Projects\magma-multigas\output\excel\two_seconds_2024-06-16_2024-06-16_TANG_RTU_ChemData_Sec2.xlsx
Plot
This package provide some basic functionality to plot some data. For the simplicity, we will use six_hours
data as an example. We will do all the basic things above, from extracting, selecting, and filtering.
Selecting Six Hours
six_hours_data = multigas.select('six_hours').get()
Date Filtering
filtered_six_hours = six_hours_data.where_date_between(start_date='2024-05-17', end_date='2024-06-18')
Plot Initiating
Using plot()
method to initiate
plot_six_hours = filtered_six_hours.plot()
Plot Avg. CO2, H2S, and SO2
This package has some default plotting method. We will use plot_co2_so2_h2s()
as an example:
plot_six_hours.plot_co2_so2_h2s()
You can see the result here:
From the plot above we can see there ae some anomaly values (below 400 for Av. CO2 Lowpass). We can re-filter it once again to optimize the result. In this case we will select column Avg_CO2_lowpass
which value greater than or equal to 250
filtered_six_hours = filtered_six_hours.where('Avg_CO2_lowpass', '>=', 250)
Then plot it:
filtered_six_hours.plot().plot_co2_so2_h2s()
Result:
We can also plot as an individual by adding parameter plot_as_individual=True
filtered_six_hours.plot().plot_co2_so2_h2s(
plot_as_individual=True
)
And the result:
Plot Specific Column(s)
Select columns to plot:
columns_to_plot = ['Avg_Wind_Speed', 'Avg_Wind_Direction', 'Avg_H2O', 'Avg_CO2_lowpass']
Then plot it:
filtered_six_hours.plot(height=2).plot_columns(columns_to_plot)
Results:
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file magma_multigas-1.3.0.tar.gz
.
File metadata
- Download URL: magma_multigas-1.3.0.tar.gz
- Upload date:
- Size: 132.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3719a6d672d4ba18336d6f269ed11c4cdf902c9f8a6ce95edf852e1f9898dd05 |
|
MD5 | 93944dbd699a3da81f3a344630b79929 |
|
BLAKE2b-256 | 9c5f85c22e091ec050dbf437cfa17533af1d31eef6f1de9dbb4e2b4cc99e5ac6 |
File details
Details for the file magma_multigas-1.3.0-py3-none-any.whl
.
File metadata
- Download URL: magma_multigas-1.3.0-py3-none-any.whl
- Upload date:
- Size: 135.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c5bb32f409c0a205fe0eb5bfcdbf209108766eead21f7eb0767297004d0c1e5c |
|
MD5 | 8bf4e9381f18ce50da35154f4f08ebe8 |
|
BLAKE2b-256 | 90ed49b194345fe5c58a4ae8fbadb26304e28a674712af08355c875b5e9cfc2f |