Skip to main content

Mahotas: Computer Vision Library

Project description

Mahotas

Python Computer Vision Library

Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy arrays.

GH Actions Status Coverage Status License Downloads Install with Conda Install with Anaconda

Python versions 2.7, 3.4+, are supported.

Notable algorithms:

Mahotas currently has over 100 functions for image processing and computer vision and it keeps growing.

The release schedule is roughly one release a month and each release brings new functionality and improved performance. The interface is very stable, though, and code written using a version of mahotas from years back will work just fine in the current version, except it will be faster (some interfaces are deprecated and will be removed after a few years, but in the meanwhile, you only get a warning). In a few unfortunate cases, there was a bug in the old code and your results will change for the better.

Please cite the mahotas paper (see details below under Citation) if you use it in a publication.

Examples

This is a simple example (using an example file that is shipped with mahotas) of calling watershed using above threshold regions as a seed (we use Otsu to define threshold).

# import using ``mh`` abbreviation which is common:
import mahotas as mh

# Load one of the demo images
im = mh.demos.load('nuclear')

# Automatically compute a threshold
T_otsu = mh.thresholding.otsu(im)

# Label the thresholded image (thresholding is done with numpy operations
seeds,nr_regions = mh.label(im > T_otsu)

# Call seeded watershed to expand the threshold
labeled = mh.cwatershed(im.max() - im, seeds)

Here is a very simple example of using mahotas.distance (which computes a distance map):

import pylab as p
import numpy as np
import mahotas as mh

f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
# f is basically True with the exception of two islands: one in the lower-right
# corner, another, middle-left

dmap = mh.distance(f)
p.imshow(dmap)
p.show()

(This is under mahotas/demos/distance.py.)

How to invoke thresholding functions:

import mahotas as mh
import numpy as np
from pylab import imshow, gray, show, subplot
from os import path

# Load photo of mahotas' author in greyscale
photo = mh.demos.load('luispedro', as_grey=True)

# Convert to integer values (using numpy operations)
photo = photo.astype(np.uint8)

# Compute Otsu threshold
T_otsu = mh.otsu(photo)
thresholded_otsu = (photo > T_otsu)

# Compute Riddler-Calvard threshold
T_rc = mh.rc(photo)
thresholded_rc = (photo > T_rc)

# Now call pylab functions to display the image
gray()
subplot(2,1,1)
imshow(thresholded_otsu)
subplot(2,1,2)
imshow(thresholded_rc)
show()

As you can see, we rely on numpy/matplotlib for many operations.

Install

If you are using conda, you can install mahotas from conda-forge using the following commands:

conda config --add channels conda-forge
conda install mahotas

Compilation from source

You will need python (naturally), numpy, and a C++ compiler. Then you should be able to use:

pip install mahotas

You can test your installation by running:

python -c "import mahotas as mh; mh.test()"

If you run into issues, the manual has more extensive documentation on mahotas installation, including how to find pre-built for several platforms.

Citation

If you use mahotas on a published publication, please cite:

Luis Pedro Coelho Mahotas: Open source software for scriptable computer vision in Journal of Open Research Software, vol 1, 2013. [DOI]

In Bibtex format:

@article{mahotas, author = {Luis Pedro Coelho}, title = {Mahotas: Open source software for scriptable computer vision}, journal = {Journal of Open Research Software}, year = {2013}, doi = {https://dx.doi.org/10.5334/jors.ac}, month = {July}, volume = {1} }

You can access this information using the mahotas.citation() function.

Development

Development happens on github (https://github.com/luispedro/mahotas).

You can set the DEBUG environment variable before compilation to get a debug version:

export DEBUG=1
python setup.py test

You can set it to the value 2 to get extra checks:

export DEBUG=2
python setup.py test

Be careful not to use this in production unless you are chasing a bug. Debug level 2 is very slow as it adds many runtime checks.

The Makefile that is shipped with the source of mahotas can be useful too. make debug will create a debug build. make fast will create a non-debug build (you need to make clean in between). make test will run the test suite.

Links & Contacts

Documentation: https://mahotas.readthedocs.io/

Issue Tracker: github mahotas issues

Mailing List: Use the pythonvision mailing list for questions, bug submissions, etc. Or ask on stackoverflow (tag mahotas)

Main Author & Maintainer: Luis Pedro Coelho (follow on twitter or github).

Mahotas also includes code by Zachary Pincus [from scikits.image], Peter J. Verveer [from scipy.ndimage], and Davis King [from dlib], Christoph Gohlke, as well as others.

Presentation about mahotas for bioimage informatics

For more general discussion of computer vision in Python, the pythonvision mailing list is a much better venue and generates a public discussion log for others in the future. You can use it for mahotas or general computer vision in Python questions.

Recent Changes

Version 1.4.18 (Jul 18 2024)

  • Fix bug in Haralick features and NumPy 2 (thanks to @Czaki, see #150)

Version 1.4.17 (Jul 13 2024)

  • Fix bug that stopped mahotas from working on Windows

Version 1.4.16 (Jul 3 2024)

  • update for NumPy 2
  • Add deprecated warning for freeimage

Version 1.4.15 (Mar 24 2024)

  • Update build system (thanks to @Czaki, see #147)

Version 1.4.14 (Mar 24 2024)

  • Fix code for C++17 (issue #146)

Version 1.4.13 (Jun 28 2022)

  • Fix freeimage testing (and make freeimage loading more robust, see #129)
  • Add GIL fixed (which triggered crashes in newer NumPy versions)

Version 1.4.12 (Oct 14 2021)

  • Update to newer NumPy
  • Build wheels for Python 3.9 & 3.10

Version 1.4.11 (Aug 16 2020)

  • Convert tests to pytest
  • Fix testing for PyPy

Version 1.4.10 (Jun 11 2020)

Version 1.4.9 (Nov 12 2019)

  • Fix FreeImage detection (issue #108)

Version 1.4.8 (Oct 11 2019)

  • Fix co-occurrence matrix computation (patch by @databaaz)

Version 1.4.7 (Jul 10 2019)

  • Fix compilation on Windows

Version 1.4.6 (Jul 10 2019)

  • Make watershed work for >2³¹ voxels (issue #102)
  • Remove milk from demos
  • Improve performance by avoid unnecessary array copies in cwatershed(), majority_filter(), and color conversions
  • Fix bug in interpolation

Version 1.4.5 (Oct 20 2018)

  • Upgrade code to newer NumPy API (issue #95)

Version 1.4.4 (Nov 5 2017)

  • Fix bug in Bernsen thresholding (issue #84)

Version 1.4.3 (Oct 3 2016)

  • Fix distribution (add missing README.md file)

Version 1.4.2 (Oct 2 2016)

  • Fix resize\_to return exactly the requested size
  • Fix hard crash when computing texture on arrays with negative values (issue #72)
  • Added distance argument to haralick features (pull request #76, by Guillaume Lemaitre)

Version 1.4.1 (Dec 20 2015)

  • Add filter\_labeled function
  • Fix tests on 32 bit platforms and older versions of numpy

Version 1.4.0 (July 8 2015)

  • Added mahotas-features.py script
  • Add short argument to citation() function
  • Add max_iter argument to thin() function
  • Fixed labeled.bbox when there is no background (issue #61, reported by Daniel Haehn)
  • bbox now allows dimensions greater than 2 (including when using the as_slice and border arguments)
  • Extended croptobbox for dimensions greater than 2
  • Added use_x_minus_y_variance option to haralick features
  • Add function lbp_names

Version 1.3.0 (April 28 2015)

  • Improve memory handling in freeimage.write_multipage
  • Fix moments parameter swap
  • Add labeled.bbox function
  • Add return_mean and return_mean_ptp arguments to haralick function
  • Add difference of Gaussians filter (by Jianyu Wang)
  • Add Laplacian filter (by Jianyu Wang)
  • Fix crash in median_filter when mismatched arguments are passed
  • Fix gaussian_filter1d for ndim > 2

Version 1.2.4 (December 23 2014)

  • Add PIL based IO

Version 1.2.3 (November 8 2014)

  • Export mean_filter at top level
  • Fix to Zernike moments computation (reported by Sergey Demurin)
  • Fix compilation in platforms without npy_float128 (patch by Gabi Davar)

Version 1.2.2 (October 19 2014)

  • Add minlength argument to labeled_sum
  • Generalize regmax/regmin to work with floating point images
  • Allow floating point inputs to cwatershed()
  • Correctly check for float16 & float128 inputs
  • Make sobel into a pure function (i.e., do not normalize its input)
  • Fix sobel filtering

Version 1.2.1 (July 21 2014)

  • Explicitly set numpy.include_dirs() in setup.py [patch by Andrew Stromnov]

Version 1.2 (July 17 2014)

  • Export locmax|locmin at the mahotas namespace level
  • Break away ellipse_axes from eccentricity code as it can be useful on its own
  • Add find() function
  • Add mean_filter() function
  • Fix cwatershed() overflow possibility
  • Make labeled functions more flexible in accepting more types
  • Fix crash in close_holes() with nD images (for n > 2)
  • Remove matplotlibwrap
  • Use standard setuptools for building (instead of numpy.distutils)
  • Add overlay() function

Version 1.1.1 (July 4 2014)

  • Fix crash in close_holes() with nD images (for n > 2)

1.1.0 (February 12 2014)

  • Better error checking
  • Fix interpolation of integer images using order 1
  • Add resize_to & resize_rgb_to
  • Add coveralls coverage
  • Fix SLIC superpixels connectivity
  • Add remove_regions_where function
  • Fix hard crash in convolution
  • Fix axis handling in convolve1d
  • Add normalization to moments calculation

See the ChangeLog for older version.

License

FOSSA Status

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mahotas-1.4.18.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

mahotas-1.4.18-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

mahotas-1.4.18-cp312-cp312-win32.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86

mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

mahotas-1.4.18-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

mahotas-1.4.18-cp311-cp311-win32.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86

mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mahotas-1.4.18-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

mahotas-1.4.18-cp310-cp310-win32.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86

mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mahotas-1.4.18-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

mahotas-1.4.18-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mahotas-1.4.18-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

mahotas-1.4.18-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

mahotas-1.4.18-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

mahotas-1.4.18-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

mahotas-1.4.18-cp36-cp36m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

mahotas-1.4.18-cp36-cp36m-win32.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86

mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file mahotas-1.4.18.tar.gz.

File metadata

  • Download URL: mahotas-1.4.18.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18.tar.gz
Algorithm Hash digest
SHA256 e6bd2eea4143a24f381b30c64078503cd8ffa20ca493e39ffa29f9d024d9cf8b
MD5 4cc92771775dc99438e73324c447c805
BLAKE2b-256 f671bf99df8458c0ca05cb9a16f400e66c09b37b15ea124aaa3becb577555cc5

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bb9e75ee04420dacd06129039d6618dfec19604ba8bef6aba596f54a19f9a91e
MD5 b855a4dedb5807fd2d8de16b48a36492
BLAKE2b-256 98fa33d12523dbf8c9e9a2f573c1d5035bb6b536a982edcc4604b32f1858ddaa

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccd7d857ad59ee33f2359c8dab56b5d93d8476b7228f3cc00465f6d804c14015
MD5 8e14aa41f9275297151ebfbf7014f654
BLAKE2b-256 916b9a2234246d59a50a151f813b7eeb0ff4a633a4a0e020c33b64f4c323bf5f

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72a98e4b22238e3cc5598b07ee8f4955f4d8cd4c3cb40388cfef96968079f813
MD5 fa2537578b20ad2cdc156e14fcfcc284
BLAKE2b-256 cd4287136b2c60e74cf9d4c5625d997089dd3d1df7edf77ab18026250ea17eec

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 16aaa64cfb09782212ecb1072c5367f5d8d4c8494dd9bae1d4af7243ebebd07e
MD5 3e8fd886bcf24c1f3235ac6ecb2e2e66
BLAKE2b-256 2c619e6eb28471de73bce7d0f3529eeab3f715d78b536fcc5ef6ea5a475821cc

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c260450a28eed8abfcf861dd8752151ab7a9bfaeedd93be50f5a1b79ba82a1f0
MD5 084f57c71bf0694d9096fe5ab007add7
BLAKE2b-256 69c7ea781abd3b3656633762c2f4d3c55260d16b5932d20202a3863cf4b644fd

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b5ab55982dcbe6664c090ca1b58ac8820735d6e166ee81b380f2eec2307ce08
MD5 25e2bd375225d813c761dce2a13514d5
BLAKE2b-256 e4008cc39b6b36190cff713b27c28f04c3453a4a91ae1e057a922c4ccb7ce4e9

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e341bad751bf21ceb6366b54bcdd8c2e011359d4176429f91dc9c3ed4ad3e71e
MD5 f2095f91cab0b2dc7f6cb46a322052f3
BLAKE2b-256 3c91bd063b061ff034d284c83aea92d88273f4eb3b0c7ecc24ac0f7ee9960068

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29880589cf567468af5b186581736609f8916656d37806dc03f5a1be57766d08
MD5 6b8433659ff683154bb787d1cb864a2a
BLAKE2b-256 4c95b0ba363011e6f66b0b529f695a1f5ef65732d18a3828badf95d74f7c47ce

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 579e6f48549b06eb32cfa9501e320194a9d8a97fe35a7832b6b1f3fa104cfb16
MD5 0b0a61d6374e94f1a3be531a7ad0670a
BLAKE2b-256 a7938ab4c4e10235b0acef65561a33b303b66d2d1fd180545872798db05f0e09

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp312-cp312-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 839787784f916c4f03a43e92bb22184920213e5ece0fa0c826f5bdf92eaaff4b
MD5 243da80e7c8de23948ff131d55f23957
BLAKE2b-256 7e7f1b89107058873a36e0aa0edd03dbbc18c647c3b672f391270d8b7f056f37

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17b6a5420fd71227cd3e875e42a01818b3d94cacb075f93afed36fab63390b75
MD5 6e9ead56c25d52c0b6584b7229697896
BLAKE2b-256 3b04ebfd6f54a5919a4f344e498a541c26ca1dbf5e7628f464cbf35ea580308a

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe05bf5ee3498cd9411adf7c9fb8e6278194a04a1491c1a6d807658d4af36bb4
MD5 14a260ad02fd2f0fabf88ce4ad07665d
BLAKE2b-256 1d84d325af34ce1c977f71503d5bddb5798cfaddbcdd30047caafcf013b2daf2

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5314778e8154fb69ddb299e07c48d1998eb3e9567724e93d5018940854975204
MD5 10f14a6bdb8d99216617d3f15e91cc9e
BLAKE2b-256 cb7807865c11f24f539e05ad951e261051d1177f8c4432fb1e230d9d8e9132a2

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7a9a7b2a9e3e9d9818a901232fc68a2f7bef31483150ac39acb7d56f86e0754c
MD5 fc37e18eb0a0a6764f77b3ea5f920678
BLAKE2b-256 e00c3710525e4d3a2cb28852cb77878d8268e3e56c52cdb4018972685a11e6cd

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp311-cp311-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a4e70ead2a2bf6e8ad9a70f9c33fe0e752edeeea1fc5e8e934efcf29d90d69f2
MD5 f18a847319759d7b31c9f6ad4e7f2052
BLAKE2b-256 8545eded44b0d6d1e4642c87eb79b6f568b8a2cbe7183dbb6aec185ea6a54786

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f4a41dd3b49bc2e5240b265b9ab35a6793c20ddcb3b392f3ba27a0940086de6
MD5 c4ef7a9245cb0447d2d5b83469d0c474
BLAKE2b-256 81fc691ed6d7aedaf8caa30786e88462edd84e78d2b50d320a07937e2ce41fb1

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28c93bdfefd4cf271bf2b30b69c130ab3cac5d840dcd3b5ae6e7f6d3648533aa
MD5 c683de9d34adbb6ec0147feaf1735aca
BLAKE2b-256 4ff23125072f76b7809bd66748b2f6872dbeb0e72f43fdd94e73a9d3df95aa4c

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 974050ee67913ac2396b4889247577f7202038dc328b50a07f83887c56ca9774
MD5 bcddb229eef5a902c2856e24cec5a3ac
BLAKE2b-256 6c15fab81001a735766f8bbe7080e714b9582817bd479b915977e748199f00d9

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 43a605408b2e9fd77f4adb0ff301bc5c096979cab06da32788fc18c3b06378db
MD5 a3eedc993a1390da40fc472e56da2774
BLAKE2b-256 2b3c2ca2b24f311586f341ba254670cc320944e7d3cf1cc741ce5a622611c668

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp310-cp310-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e1804359325ebd5a08998c7d3837ea10883a66678007662e4c849013f7d084ea
MD5 d3a007c91c702ed1f5e6a0b9b65b794b
BLAKE2b-256 ed88075d55003e28ff9964cd72b5d3c48f37b4320ab2d209010970005aac63a0

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f890b79891184a4a6dcc274da847fbf54fe4b8fa8839705af677cdb63536f22
MD5 d858805ef0a576ffa062470c26a68393
BLAKE2b-256 541a2f6dbb52599c9da9aac6da0f60950f6b7eed54a3d38779bf0f80d41b3eb9

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a33ef7e8bd0ff08990d08274a7d7aaaf1143540983de3e036295d6668ce12cb6
MD5 99df132b079b7e594486b8bda153b9e5
BLAKE2b-256 b97b3c09b1bb0c0c045a33cef7763d094a7857c7475564e223391845f176cdb2

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0238a4665d55f936c6dfb26293e7348482cf9c71bd1caec3a896bfb988b6623b
MD5 b1e98c34cbfa51b9220639baf5d89458
BLAKE2b-256 e183f291cb8d7897509e967a9bb0313b585e4ab81a45d0e4cab5e31cc599f6e3

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd35f2e7f70da27e27c995821203c1fadccf4d0a2600383aad7a97ba014559a5
MD5 4f225cbfbc499716240fa9abdc4f93e2
BLAKE2b-256 7d5a2e89a81a018fa77c269cf45ffe99e2ccc756db4ca53ed25d2fb321d76537

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 31a3bb0d899b611aeed101ff3718ac55df764f6562528d457bd3c18f765bbb04
MD5 cb0dfac603e8e9416534fa7779e67407
BLAKE2b-256 a29ebe2eb036fdb86dc0ab9945a863425fa5e29f636f9f1ad9af75b2dd6c3ffb

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a7fcce88073fc540495bb9db71af675da227562a6cb485e31c5c1ecf2cab8c6
MD5 d1971ab4267810def76636edd239bc51
BLAKE2b-256 6382f444433c0b1b03c1e40308dcaa6a710774b9e513784a3661eb5867634e02

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3ab43c6ee731ed71c2a0defd3f5bc619ad151fa72792cd1d0af4258e59b3f55
MD5 af1b64f38b23c1faf32c57ef3a9220a4
BLAKE2b-256 603adc0fb2422d3c3b0eac35f9d02bbc03448b267fec83f86906305f03ed2967

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 94efd28e96cb47891b168f06513b329140deca175f3dee6a68b60af239b02d64
MD5 dba76c6a7edf1a717fd7819340433963
BLAKE2b-256 2a847c9025ffed11db2798c804ed30ccdde47344ab2d464e704377b46c103803

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b5325a1774cf9d1d45d0492339ca8df34ee61d42d41ee12b988b6de41ef48338
MD5 a9f7d4721b8e2006eb83cfa358d26980
BLAKE2b-256 c413d2d60e79d7a4c116379594ccc635a1c5d0dd062a3760134827cd33090aa9

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 35a33c165ad6afabddd839eee252ab8fe6f6e5e276c70449048034c218c91e01
MD5 57012f735a1a016a27018668b11a6fe9
BLAKE2b-256 709afc6d280e03dc6c157ed4733873ec85df713c9714d4d001446ed53f2359ae

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c47def3e69ea667a40ba1ad9352b5c0ac8ac8b12d9996d8e8c34d6ed2f98555
MD5 46fe795f81e9159f297d91340d86950a
BLAKE2b-256 3e0d2290df4a4e45f3de414341ade0919e6d8aa23e7b571a5a79f82a5c81175c

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b3963b320bf7b771f4ac18473be2791ff2f4a249c3aac774f0ae8fe87beb260
MD5 bfdeb478ac306cdf5300602fca4bd48c
BLAKE2b-256 81e2dba9f224deec358b48d64c5a8ad64d8f11860561f67fcfe2d3715c7d60b2

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6b20d22bb2a30e2ffc599e8f1009c060045e0acf0642378528fc65c908ac730
MD5 e1249bda44f41b0a8d2b3e41fbcf1081
BLAKE2b-256 ad6de3a7d57290a474e98d46fea13b8f7df318e3867018a6e00de116df99b571

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1b7dc6d5f435fdff39b6baafdbb2a953907c6c5c1137ceb60f7fe1032f32e012
MD5 ee61490fb75c4ae0d5a4f7c9afbe265d
BLAKE2b-256 cae2ab8101929fd54ac4d6fca0de7d654d02b31263ff183d9d84530cc7e1ec81

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp37-cp37m-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 20e3398eae2af20b6e64ee48865b2811e670346091fc2e8080f40ed190222c3a
MD5 538c4599ab40003848402423dea03af2
BLAKE2b-256 6e9164b93c87b6a20ddada5230c9044215de9a235539fd41c62d4ba3db2f202d

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12762f32fb2bf34f072ee410e533c60d0301ca9a507eec5fe039cac6d1ff3273
MD5 f181507f7a5c795518ebd63647850e9c
BLAKE2b-256 f7db7792f743fad377c69111ba040855a44b9520c69418faaf1e3698c5246066

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 682eb0d3df01f0b18e5287f3a6b9c3787ee0e3d0fdad3d4952e6d865ffb13684
MD5 3b9bb0a7455f3ed6f105acc1fbb0abfc
BLAKE2b-256 5b156ca2e31cd11c0ae7a96e38943a5836f23f685c19b1a78c248a92dc2d45a7

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a419b07e56e4a33a56880e68bddfdd7f1c8b87721b8f2e20058e771cfc9be65e
MD5 369866161e4bd6ad0f5f825dd54fe616
BLAKE2b-256 5a28c9b463bc96b530db0ee627fbe76b2cde61978213010a82cd3c14f6a4b1d6

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp36-cp36m-win32.whl.

File metadata

  • Download URL: mahotas-1.4.18-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for mahotas-1.4.18-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0df6d5d63039764dd32d3e5e172ec7e9490ac81af9a5b8965ad58752451061aa
MD5 fc7c9df821f260211daf60be88a286c6
BLAKE2b-256 e3394234cea59334b9f7bc458e061f0602489f2f55074bdef30b4aa07b25ca99

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85f327e13e9445cf65000429b7ae82c2f1700a3d3031686e17a3f392eb0dfac7
MD5 db2ffd49954b26a885c3ddcc2b6c987a
BLAKE2b-256 169c5c4a90987a68d3a53d3f494813c81c47203b107dd953d6ff421028f87a73

See more details on using hashes here.

File details

Details for the file mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5a268e7cf950acb95949a5351c7c9c7752866611acc1e8ddad232ef659d4934
MD5 e0300fc677d3ecbe582f0fde6cf876f8
BLAKE2b-256 2fdbb0bccccae573114cfc8e517157d076f96f7a5378a1837a27bad67b55be26

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page