Mahotas: Computer Vision Library
Project description
Mahotas
Python Computer Vision Library
Mahotas is a library of fast computer vision algorithms (all implemented in C++ for speed) operating over numpy arrays.
Python versions 2.7, 3.4+, are supported.
Notable algorithms:
- watershed
- convex points calculations.
- hit & miss, thinning.
- Zernike & Haralick, LBP, and TAS features.
- Speeded-Up Robust Features (SURF), a form of local features.
- thresholding.
- convolution.
- Sobel edge detection.
- spline interpolation
- SLIC super pixels.
Mahotas currently has over 100 functions for image processing and computer vision and it keeps growing.
The release schedule is roughly one release a month and each release brings new functionality and improved performance. The interface is very stable, though, and code written using a version of mahotas from years back will work just fine in the current version, except it will be faster (some interfaces are deprecated and will be removed after a few years, but in the meanwhile, you only get a warning). In a few unfortunate cases, there was a bug in the old code and your results will change for the better.
Please cite the mahotas paper (see details below under Citation) if you use it in a publication.
Examples
This is a simple example (using an example file that is shipped with mahotas) of calling watershed using above threshold regions as a seed (we use Otsu to define threshold).
# import using ``mh`` abbreviation which is common:
import mahotas as mh
# Load one of the demo images
im = mh.demos.load('nuclear')
# Automatically compute a threshold
T_otsu = mh.thresholding.otsu(im)
# Label the thresholded image (thresholding is done with numpy operations
seeds,nr_regions = mh.label(im > T_otsu)
# Call seeded watershed to expand the threshold
labeled = mh.cwatershed(im.max() - im, seeds)
Here is a very simple example of using mahotas.distance
(which
computes a distance map):
import pylab as p
import numpy as np
import mahotas as mh
f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
# f is basically True with the exception of two islands: one in the lower-right
# corner, another, middle-left
dmap = mh.distance(f)
p.imshow(dmap)
p.show()
(This is under mahotas/demos/distance.py.)
How to invoke thresholding functions:
import mahotas as mh
import numpy as np
from pylab import imshow, gray, show, subplot
from os import path
# Load photo of mahotas' author in greyscale
photo = mh.demos.load('luispedro', as_grey=True)
# Convert to integer values (using numpy operations)
photo = photo.astype(np.uint8)
# Compute Otsu threshold
T_otsu = mh.otsu(photo)
thresholded_otsu = (photo > T_otsu)
# Compute Riddler-Calvard threshold
T_rc = mh.rc(photo)
thresholded_rc = (photo > T_rc)
# Now call pylab functions to display the image
gray()
subplot(2,1,1)
imshow(thresholded_otsu)
subplot(2,1,2)
imshow(thresholded_rc)
show()
As you can see, we rely on numpy/matplotlib for many operations.
Install
If you are using conda, you can install mahotas from conda-forge using the following commands:
conda config --add channels conda-forge
conda install mahotas
Compilation from source
You will need python (naturally), numpy, and a C++ compiler. Then you should be able to use:
pip install mahotas
You can test your installation by running:
python -c "import mahotas as mh; mh.test()"
If you run into issues, the manual has more extensive documentation on mahotas installation, including how to find pre-built for several platforms.
Citation
If you use mahotas on a published publication, please cite:
Luis Pedro Coelho Mahotas: Open source software for scriptable computer vision in Journal of Open Research Software, vol 1, 2013. [DOI]
In Bibtex format:
@article{mahotas, author = {Luis Pedro Coelho}, title = {Mahotas: Open source software for scriptable computer vision}, journal = {Journal of Open Research Software}, year = {2013}, doi = {https://dx.doi.org/10.5334/jors.ac}, month = {July}, volume = {1} }
You can access this information using the mahotas.citation()
function.
Development
Development happens on github (https://github.com/luispedro/mahotas).
You can set the DEBUG
environment variable before compilation to get a
debug version:
export DEBUG=1
python setup.py test
You can set it to the value 2
to get extra checks:
export DEBUG=2
python setup.py test
Be careful not to use this in production unless you are chasing a bug. Debug level 2 is very slow as it adds many runtime checks.
The Makefile
that is shipped with the source of mahotas can be useful
too. make debug
will create a debug build. make fast
will create a
non-debug build (you need to make clean
in between). make test
will
run the test suite.
Links & Contacts
Documentation: https://mahotas.readthedocs.io/
Issue Tracker: github mahotas issues
Mailing List: Use the pythonvision mailing list for questions, bug submissions, etc. Or ask on stackoverflow (tag mahotas)
Main Author & Maintainer: Luis Pedro Coelho (follow on twitter or github).
Mahotas also includes code by Zachary Pincus [from scikits.image], Peter J. Verveer [from scipy.ndimage], and Davis King [from dlib], Christoph Gohlke, as well as others.
Presentation about mahotas for bioimage informatics
For more general discussion of computer vision in Python, the pythonvision mailing list is a much better venue and generates a public discussion log for others in the future. You can use it for mahotas or general computer vision in Python questions.
Recent Changes
Version 1.4.18 (Jul 18 2024)
- Fix bug in Haralick features and NumPy 2 (thanks to @Czaki, see #150)
Version 1.4.17 (Jul 13 2024)
- Fix bug that stopped mahotas from working on Windows
Version 1.4.16 (Jul 3 2024)
- update for NumPy 2
- Add deprecated warning for freeimage
Version 1.4.15 (Mar 24 2024)
- Update build system (thanks to @Czaki, see #147)
Version 1.4.14 (Mar 24 2024)
- Fix code for C++17 (issue #146)
Version 1.4.13 (Jun 28 2022)
- Fix freeimage testing (and make freeimage loading more robust, see #129)
- Add GIL fixed (which triggered crashes in newer NumPy versions)
Version 1.4.12 (Oct 14 2021)
- Update to newer NumPy
- Build wheels for Python 3.9 & 3.10
Version 1.4.11 (Aug 16 2020)
- Convert tests to pytest
- Fix testing for PyPy
Version 1.4.10 (Jun 11 2020)
- Build wheels automatically (PR #114 by nathanhillyer)
Version 1.4.9 (Nov 12 2019)
- Fix FreeImage detection (issue #108)
Version 1.4.8 (Oct 11 2019)
- Fix co-occurrence matrix computation (patch by @databaaz)
Version 1.4.7 (Jul 10 2019)
- Fix compilation on Windows
Version 1.4.6 (Jul 10 2019)
- Make watershed work for >2³¹ voxels (issue #102)
- Remove milk from demos
- Improve performance by avoid unnecessary array copies in
cwatershed()
,majority_filter()
, and color conversions - Fix bug in interpolation
Version 1.4.5 (Oct 20 2018)
- Upgrade code to newer NumPy API (issue #95)
Version 1.4.4 (Nov 5 2017)
- Fix bug in Bernsen thresholding (issue #84)
Version 1.4.3 (Oct 3 2016)
- Fix distribution (add missing
README.md
file)
Version 1.4.2 (Oct 2 2016)
- Fix
resize\_to
return exactly the requested size - Fix hard crash when computing texture on arrays with negative values (issue #72)
- Added
distance
argument to haralick features (pull request #76, by Guillaume Lemaitre)
Version 1.4.1 (Dec 20 2015)
- Add
filter\_labeled
function - Fix tests on 32 bit platforms and older versions of numpy
Version 1.4.0 (July 8 2015)
- Added
mahotas-features.py
script - Add short argument to citation() function
- Add max_iter argument to thin() function
- Fixed labeled.bbox when there is no background (issue #61, reported by Daniel Haehn)
- bbox now allows dimensions greater than 2 (including when using the
as_slice
andborder
arguments) - Extended croptobbox for dimensions greater than 2
- Added use_x_minus_y_variance option to haralick features
- Add function
lbp_names
Version 1.3.0 (April 28 2015)
- Improve memory handling in freeimage.write_multipage
- Fix moments parameter swap
- Add labeled.bbox function
- Add return_mean and return_mean_ptp arguments to haralick function
- Add difference of Gaussians filter (by Jianyu Wang)
- Add Laplacian filter (by Jianyu Wang)
- Fix crash in median_filter when mismatched arguments are passed
- Fix gaussian_filter1d for ndim > 2
Version 1.2.4 (December 23 2014)
- Add PIL based IO
Version 1.2.3 (November 8 2014)
- Export mean_filter at top level
- Fix to Zernike moments computation (reported by Sergey Demurin)
- Fix compilation in platforms without npy_float128 (patch by Gabi Davar)
Version 1.2.2 (October 19 2014)
- Add minlength argument to labeled_sum
- Generalize regmax/regmin to work with floating point images
- Allow floating point inputs to
cwatershed()
- Correctly check for float16 & float128 inputs
- Make sobel into a pure function (i.e., do not normalize its input)
- Fix sobel filtering
Version 1.2.1 (July 21 2014)
- Explicitly set numpy.include_dirs() in setup.py [patch by Andrew Stromnov]
Version 1.2 (July 17 2014)
- Export locmax|locmin at the mahotas namespace level
- Break away ellipse_axes from eccentricity code as it can be useful on its own
- Add
find()
function - Add
mean_filter()
function - Fix
cwatershed()
overflow possibility - Make labeled functions more flexible in accepting more types
- Fix crash in
close_holes()
with nD images (for n > 2) - Remove matplotlibwrap
- Use standard setuptools for building (instead of numpy.distutils)
- Add
overlay()
function
Version 1.1.1 (July 4 2014)
- Fix crash in close_holes() with nD images (for n > 2)
1.1.0 (February 12 2014)
- Better error checking
- Fix interpolation of integer images using order 1
- Add resize_to & resize_rgb_to
- Add coveralls coverage
- Fix SLIC superpixels connectivity
- Add remove_regions_where function
- Fix hard crash in convolution
- Fix axis handling in convolve1d
- Add normalization to moments calculation
See the ChangeLog for older version.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for mahotas-1.4.18-pp39-pypy39_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb9e75ee04420dacd06129039d6618dfec19604ba8bef6aba596f54a19f9a91e |
|
MD5 | b855a4dedb5807fd2d8de16b48a36492 |
|
BLAKE2b-256 | 98fa33d12523dbf8c9e9a2f573c1d5035bb6b536a982edcc4604b32f1858ddaa |
Hashes for mahotas-1.4.18-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccd7d857ad59ee33f2359c8dab56b5d93d8476b7228f3cc00465f6d804c14015 |
|
MD5 | 8e14aa41f9275297151ebfbf7014f654 |
|
BLAKE2b-256 | 916b9a2234246d59a50a151f813b7eeb0ff4a633a4a0e020c33b64f4c323bf5f |
Hashes for mahotas-1.4.18-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72a98e4b22238e3cc5598b07ee8f4955f4d8cd4c3cb40388cfef96968079f813 |
|
MD5 | fa2537578b20ad2cdc156e14fcfcc284 |
|
BLAKE2b-256 | cd4287136b2c60e74cf9d4c5625d997089dd3d1df7edf77ab18026250ea17eec |
Hashes for mahotas-1.4.18-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16aaa64cfb09782212ecb1072c5367f5d8d4c8494dd9bae1d4af7243ebebd07e |
|
MD5 | 3e8fd886bcf24c1f3235ac6ecb2e2e66 |
|
BLAKE2b-256 | 2c619e6eb28471de73bce7d0f3529eeab3f715d78b536fcc5ef6ea5a475821cc |
Hashes for mahotas-1.4.18-pp38-pypy38_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c260450a28eed8abfcf861dd8752151ab7a9bfaeedd93be50f5a1b79ba82a1f0 |
|
MD5 | 084f57c71bf0694d9096fe5ab007add7 |
|
BLAKE2b-256 | 69c7ea781abd3b3656633762c2f4d3c55260d16b5932d20202a3863cf4b644fd |
Hashes for mahotas-1.4.18-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b5ab55982dcbe6664c090ca1b58ac8820735d6e166ee81b380f2eec2307ce08 |
|
MD5 | 25e2bd375225d813c761dce2a13514d5 |
|
BLAKE2b-256 | e4008cc39b6b36190cff713b27c28f04c3453a4a91ae1e057a922c4ccb7ce4e9 |
Hashes for mahotas-1.4.18-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e341bad751bf21ceb6366b54bcdd8c2e011359d4176429f91dc9c3ed4ad3e71e |
|
MD5 | f2095f91cab0b2dc7f6cb46a322052f3 |
|
BLAKE2b-256 | 3c91bd063b061ff034d284c83aea92d88273f4eb3b0c7ecc24ac0f7ee9960068 |
Hashes for mahotas-1.4.18-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29880589cf567468af5b186581736609f8916656d37806dc03f5a1be57766d08 |
|
MD5 | 6b8433659ff683154bb787d1cb864a2a |
|
BLAKE2b-256 | 4c95b0ba363011e6f66b0b529f695a1f5ef65732d18a3828badf95d74f7c47ce |
Hashes for mahotas-1.4.18-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 579e6f48549b06eb32cfa9501e320194a9d8a97fe35a7832b6b1f3fa104cfb16 |
|
MD5 | 0b0a61d6374e94f1a3be531a7ad0670a |
|
BLAKE2b-256 | a7938ab4c4e10235b0acef65561a33b303b66d2d1fd180545872798db05f0e09 |
Hashes for mahotas-1.4.18-cp312-cp312-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 839787784f916c4f03a43e92bb22184920213e5ece0fa0c826f5bdf92eaaff4b |
|
MD5 | 243da80e7c8de23948ff131d55f23957 |
|
BLAKE2b-256 | 7e7f1b89107058873a36e0aa0edd03dbbc18c647c3b672f391270d8b7f056f37 |
Hashes for mahotas-1.4.18-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17b6a5420fd71227cd3e875e42a01818b3d94cacb075f93afed36fab63390b75 |
|
MD5 | 6e9ead56c25d52c0b6584b7229697896 |
|
BLAKE2b-256 | 3b04ebfd6f54a5919a4f344e498a541c26ca1dbf5e7628f464cbf35ea580308a |
Hashes for mahotas-1.4.18-cp312-cp312-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe05bf5ee3498cd9411adf7c9fb8e6278194a04a1491c1a6d807658d4af36bb4 |
|
MD5 | 14a260ad02fd2f0fabf88ce4ad07665d |
|
BLAKE2b-256 | 1d84d325af34ce1c977f71503d5bddb5798cfaddbcdd30047caafcf013b2daf2 |
Hashes for mahotas-1.4.18-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5314778e8154fb69ddb299e07c48d1998eb3e9567724e93d5018940854975204 |
|
MD5 | 10f14a6bdb8d99216617d3f15e91cc9e |
|
BLAKE2b-256 | cb7807865c11f24f539e05ad951e261051d1177f8c4432fb1e230d9d8e9132a2 |
Hashes for mahotas-1.4.18-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a9a7b2a9e3e9d9818a901232fc68a2f7bef31483150ac39acb7d56f86e0754c |
|
MD5 | fc37e18eb0a0a6764f77b3ea5f920678 |
|
BLAKE2b-256 | e00c3710525e4d3a2cb28852cb77878d8268e3e56c52cdb4018972685a11e6cd |
Hashes for mahotas-1.4.18-cp311-cp311-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4e70ead2a2bf6e8ad9a70f9c33fe0e752edeeea1fc5e8e934efcf29d90d69f2 |
|
MD5 | f18a847319759d7b31c9f6ad4e7f2052 |
|
BLAKE2b-256 | 8545eded44b0d6d1e4642c87eb79b6f568b8a2cbe7183dbb6aec185ea6a54786 |
Hashes for mahotas-1.4.18-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f4a41dd3b49bc2e5240b265b9ab35a6793c20ddcb3b392f3ba27a0940086de6 |
|
MD5 | c4ef7a9245cb0447d2d5b83469d0c474 |
|
BLAKE2b-256 | 81fc691ed6d7aedaf8caa30786e88462edd84e78d2b50d320a07937e2ce41fb1 |
Hashes for mahotas-1.4.18-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28c93bdfefd4cf271bf2b30b69c130ab3cac5d840dcd3b5ae6e7f6d3648533aa |
|
MD5 | c683de9d34adbb6ec0147feaf1735aca |
|
BLAKE2b-256 | 4ff23125072f76b7809bd66748b2f6872dbeb0e72f43fdd94e73a9d3df95aa4c |
Hashes for mahotas-1.4.18-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 974050ee67913ac2396b4889247577f7202038dc328b50a07f83887c56ca9774 |
|
MD5 | bcddb229eef5a902c2856e24cec5a3ac |
|
BLAKE2b-256 | 6c15fab81001a735766f8bbe7080e714b9582817bd479b915977e748199f00d9 |
Hashes for mahotas-1.4.18-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43a605408b2e9fd77f4adb0ff301bc5c096979cab06da32788fc18c3b06378db |
|
MD5 | a3eedc993a1390da40fc472e56da2774 |
|
BLAKE2b-256 | 2b3c2ca2b24f311586f341ba254670cc320944e7d3cf1cc741ce5a622611c668 |
Hashes for mahotas-1.4.18-cp310-cp310-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1804359325ebd5a08998c7d3837ea10883a66678007662e4c849013f7d084ea |
|
MD5 | d3a007c91c702ed1f5e6a0b9b65b794b |
|
BLAKE2b-256 | ed88075d55003e28ff9964cd72b5d3c48f37b4320ab2d209010970005aac63a0 |
Hashes for mahotas-1.4.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f890b79891184a4a6dcc274da847fbf54fe4b8fa8839705af677cdb63536f22 |
|
MD5 | d858805ef0a576ffa062470c26a68393 |
|
BLAKE2b-256 | 541a2f6dbb52599c9da9aac6da0f60950f6b7eed54a3d38779bf0f80d41b3eb9 |
Hashes for mahotas-1.4.18-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a33ef7e8bd0ff08990d08274a7d7aaaf1143540983de3e036295d6668ce12cb6 |
|
MD5 | 99df132b079b7e594486b8bda153b9e5 |
|
BLAKE2b-256 | b97b3c09b1bb0c0c045a33cef7763d094a7857c7475564e223391845f176cdb2 |
Hashes for mahotas-1.4.18-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0238a4665d55f936c6dfb26293e7348482cf9c71bd1caec3a896bfb988b6623b |
|
MD5 | b1e98c34cbfa51b9220639baf5d89458 |
|
BLAKE2b-256 | e183f291cb8d7897509e967a9bb0313b585e4ab81a45d0e4cab5e31cc599f6e3 |
Hashes for mahotas-1.4.18-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd35f2e7f70da27e27c995821203c1fadccf4d0a2600383aad7a97ba014559a5 |
|
MD5 | 4f225cbfbc499716240fa9abdc4f93e2 |
|
BLAKE2b-256 | 7d5a2e89a81a018fa77c269cf45ffe99e2ccc756db4ca53ed25d2fb321d76537 |
Hashes for mahotas-1.4.18-cp39-cp39-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31a3bb0d899b611aeed101ff3718ac55df764f6562528d457bd3c18f765bbb04 |
|
MD5 | cb0dfac603e8e9416534fa7779e67407 |
|
BLAKE2b-256 | a29ebe2eb036fdb86dc0ab9945a863425fa5e29f636f9f1ad9af75b2dd6c3ffb |
Hashes for mahotas-1.4.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a7fcce88073fc540495bb9db71af675da227562a6cb485e31c5c1ecf2cab8c6 |
|
MD5 | d1971ab4267810def76636edd239bc51 |
|
BLAKE2b-256 | 6382f444433c0b1b03c1e40308dcaa6a710774b9e513784a3661eb5867634e02 |
Hashes for mahotas-1.4.18-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3ab43c6ee731ed71c2a0defd3f5bc619ad151fa72792cd1d0af4258e59b3f55 |
|
MD5 | af1b64f38b23c1faf32c57ef3a9220a4 |
|
BLAKE2b-256 | 603adc0fb2422d3c3b0eac35f9d02bbc03448b267fec83f86906305f03ed2967 |
Hashes for mahotas-1.4.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94efd28e96cb47891b168f06513b329140deca175f3dee6a68b60af239b02d64 |
|
MD5 | dba76c6a7edf1a717fd7819340433963 |
|
BLAKE2b-256 | 2a847c9025ffed11db2798c804ed30ccdde47344ab2d464e704377b46c103803 |
Hashes for mahotas-1.4.18-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5325a1774cf9d1d45d0492339ca8df34ee61d42d41ee12b988b6de41ef48338 |
|
MD5 | a9f7d4721b8e2006eb83cfa358d26980 |
|
BLAKE2b-256 | c413d2d60e79d7a4c116379594ccc635a1c5d0dd062a3760134827cd33090aa9 |
Hashes for mahotas-1.4.18-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35a33c165ad6afabddd839eee252ab8fe6f6e5e276c70449048034c218c91e01 |
|
MD5 | 57012f735a1a016a27018668b11a6fe9 |
|
BLAKE2b-256 | 709afc6d280e03dc6c157ed4733873ec85df713c9714d4d001446ed53f2359ae |
Hashes for mahotas-1.4.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c47def3e69ea667a40ba1ad9352b5c0ac8ac8b12d9996d8e8c34d6ed2f98555 |
|
MD5 | 46fe795f81e9159f297d91340d86950a |
|
BLAKE2b-256 | 3e0d2290df4a4e45f3de414341ade0919e6d8aa23e7b571a5a79f82a5c81175c |
Hashes for mahotas-1.4.18-cp38-cp38-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8b3963b320bf7b771f4ac18473be2791ff2f4a249c3aac774f0ae8fe87beb260 |
|
MD5 | bfdeb478ac306cdf5300602fca4bd48c |
|
BLAKE2b-256 | 81e2dba9f224deec358b48d64c5a8ad64d8f11860561f67fcfe2d3715c7d60b2 |
Hashes for mahotas-1.4.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6b20d22bb2a30e2ffc599e8f1009c060045e0acf0642378528fc65c908ac730 |
|
MD5 | e1249bda44f41b0a8d2b3e41fbcf1081 |
|
BLAKE2b-256 | ad6de3a7d57290a474e98d46fea13b8f7df318e3867018a6e00de116df99b571 |
Hashes for mahotas-1.4.18-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b7dc6d5f435fdff39b6baafdbb2a953907c6c5c1137ceb60f7fe1032f32e012 |
|
MD5 | ee61490fb75c4ae0d5a4f7c9afbe265d |
|
BLAKE2b-256 | cae2ab8101929fd54ac4d6fca0de7d654d02b31263ff183d9d84530cc7e1ec81 |
Hashes for mahotas-1.4.18-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20e3398eae2af20b6e64ee48865b2811e670346091fc2e8080f40ed190222c3a |
|
MD5 | 538c4599ab40003848402423dea03af2 |
|
BLAKE2b-256 | 6e9164b93c87b6a20ddada5230c9044215de9a235539fd41c62d4ba3db2f202d |
Hashes for mahotas-1.4.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12762f32fb2bf34f072ee410e533c60d0301ca9a507eec5fe039cac6d1ff3273 |
|
MD5 | f181507f7a5c795518ebd63647850e9c |
|
BLAKE2b-256 | f7db7792f743fad377c69111ba040855a44b9520c69418faaf1e3698c5246066 |
Hashes for mahotas-1.4.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 682eb0d3df01f0b18e5287f3a6b9c3787ee0e3d0fdad3d4952e6d865ffb13684 |
|
MD5 | 3b9bb0a7455f3ed6f105acc1fbb0abfc |
|
BLAKE2b-256 | 5b156ca2e31cd11c0ae7a96e38943a5836f23f685c19b1a78c248a92dc2d45a7 |
Hashes for mahotas-1.4.18-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a419b07e56e4a33a56880e68bddfdd7f1c8b87721b8f2e20058e771cfc9be65e |
|
MD5 | 369866161e4bd6ad0f5f825dd54fe616 |
|
BLAKE2b-256 | 5a28c9b463bc96b530db0ee627fbe76b2cde61978213010a82cd3c14f6a4b1d6 |
Hashes for mahotas-1.4.18-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0df6d5d63039764dd32d3e5e172ec7e9490ac81af9a5b8965ad58752451061aa |
|
MD5 | fc7c9df821f260211daf60be88a286c6 |
|
BLAKE2b-256 | e3394234cea59334b9f7bc458e061f0602489f2f55074bdef30b4aa07b25ca99 |
Hashes for mahotas-1.4.18-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85f327e13e9445cf65000429b7ae82c2f1700a3d3031686e17a3f392eb0dfac7 |
|
MD5 | db2ffd49954b26a885c3ddcc2b6c987a |
|
BLAKE2b-256 | 169c5c4a90987a68d3a53d3f494813c81c47203b107dd953d6ff421028f87a73 |
Hashes for mahotas-1.4.18-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5a268e7cf950acb95949a5351c7c9c7752866611acc1e8ddad232ef659d4934 |
|
MD5 | e0300fc677d3ecbe582f0fde6cf876f8 |
|
BLAKE2b-256 | 2fdbb0bccccae573114cfc8e517157d076f96f7a5378a1837a27bad67b55be26 |