Skip to main content

A Python package for using MAiNGO - McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization

Project description

maingopy - Python interface for MAiNGO

Maingopy is the Python interface for MAiNGO, the McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization. MAiNGO is a deterministic global optimization solver for nonconvex mixed-integer nonlinear programming problems. For more information on MAiNGO, please visit the MAiNGO website. The open source version of MAiNGO is available on our GitLab page. The documentation of MAiNGO is available here.

Obtaining maingopy

Maingopy can either be obtained as a source of binary distribution via PyPI or built from source via the git repository.

To obtain it via PyPI, run

$ pip install maingopy

This will typically get you the binary distribution of the maingopy package that contains a pre-compiled version of MAiNGO along with its Python bindings, as well as an extension module for MeLOn, which contains machine learning models for use in optimization problems to be solved by MAiNGO.

Note that the pre-compiled version of MAiNGO contained in this package does not allow the use of

  1. the optional closed-source subsolvers CPLEX or KNITRO, even if they are installed on your system,
  2. the MPI parallelization of MAiNGO.

To use these features, you will need to build maingopy from source. In this case, please obtain the code from our GitLab page and follow the instructions provided there.

Using maingopy

Maingopy provides Python bindings (enabled by pybind11) for the C++ API of MAiNGO. Details on how to use it are available in the documentation of MAiNGO. Example problems can be found in the examples directory in the MAiNGO repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maingopy-0.8.1.tar.gz (18.0 MB view details)

Uploaded Source

Built Distributions

maingopy-0.8.1-cp312-cp312-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

maingopy-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

maingopy-0.8.1-cp311-cp311-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

maingopy-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

maingopy-0.8.1-cp310-cp310-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

maingopy-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

maingopy-0.8.1-cp39-cp39-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

maingopy-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

maingopy-0.8.1-cp38-cp38-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

maingopy-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

maingopy-0.8.1-cp37-cp37m-win_amd64.whl (5.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

maingopy-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file maingopy-0.8.1.tar.gz.

File metadata

  • Download URL: maingopy-0.8.1.tar.gz
  • Upload date:
  • Size: 18.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for maingopy-0.8.1.tar.gz
Algorithm Hash digest
SHA256 80ff3f188fa91da0cb69e326988ae1dcf5e409a49775ba3bc7b519580cacd397
MD5 c6be7e41ed7724993bfe7b10d2e21c6e
BLAKE2b-256 d02bdcb4ed9edbb16fa519c34797f0c98ee6f9c3277da9f09aa4dee45a8014ef

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0eb9817a13e765520dff4edc9e0efbe3775ee7610335fc8479ca3f06d6628424
MD5 bd3752cbd5690f6eb474d3d6b2231ff6
BLAKE2b-256 054aa4675dd7d06e56f356ab12440e162168d23c03a8fa1816ded149138b66b3

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a5dee431ac81c5eeb76db8291082e82abf1d297301c50060bbbac7df5ab80266
MD5 76cbd92ebddda70067dd9abaf2261e29
BLAKE2b-256 4db57132458f613b4bc8e71af24bb3ec3910a6676125c84ffd3031491c66f8de

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2e828893386708a3fcb3d12ba75ed4027818baa877836cefab9c15cab53fab87
MD5 8323a57dbce5cdb49f14f5d1502250aa
BLAKE2b-256 731c8c7935ca11f3ddfd63ab5cc9c1740bda728cf100b3a0ab6b9cfa7be9b602

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 91ab84e57b84ca173f5051636b9ebc184b03633372e7535c25b90b787adc8bfd
MD5 86f3af239d1c95ae60ed2b1dfc2be678
BLAKE2b-256 6d99d7344f4b9d0077447105d52e3ff0a8a9c788a5eef60f76410852e77092f7

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9cb30d506e072a679d70a6907b638a9c3b78bc1dfa3d33a8e7c18d7470a718ae
MD5 d4b2c98777ab55eab3898775387edc87
BLAKE2b-256 c937347eb44ccc4bde977a52720b107781ea677c728f9d80735b9b7df692bff8

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 31dd85d44b82b4b22222be8028397a4e79302099e7f80e6cd1e37f5266401635
MD5 9517a35fbad63b5a5979ab359973dbb5
BLAKE2b-256 811399091f8a27afbecb8374033b51888f21886a4891e840ab419e885d67142f

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: maingopy-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for maingopy-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e4606fc385e52175643265ab66e86b56c95e5da8a7cba717a3471ddc25758bc6
MD5 9daec925588ada47018272a5f438de93
BLAKE2b-256 e7da5b3f8be0ab9ed39fb653b7efbfec14862da0b62906819862f7e2d60721e1

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b55525adc531e587df0e6d8ae2a3030af8afbe8631b34eeeefbbf8f42b5740ff
MD5 186df3ae0875c6c6e139a37516126548
BLAKE2b-256 10cace92d7142fd48c243fdfc9cf71630f52b2760e9c633d4e66eef32e72bcba

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: maingopy-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for maingopy-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a56cd6357920290ee2d842028e53e3bdd12b4766716d5467f744c87d2bbf07e5
MD5 381cba3bcc24328625228fd3b4e965d4
BLAKE2b-256 e6c3f412470b539248671ef3c231dc9e87294ae7f38af8320314f70f809711dd

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 38cac9af240e17dfcb6a42591143a3e148f4cf2e34ed2d7b1ea2ffad9184a4d8
MD5 69fe96c02fae3be528b065917d75ef90
BLAKE2b-256 bf94bf6329a6b6a0745a32584839d8a617adc7c7063f994b6c9ab85397de52b8

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: maingopy-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for maingopy-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b32c18467b8ff4d6ca64ba799fc4feb4acff7de099f4513753d53cbc95ac6861
MD5 f1e593ce188056785fe3c00935f562c8
BLAKE2b-256 f1ae1f6b2a64dd7c548cd52cff315d46d0e6ca0faff39da12feeb7df85cb3a60

See more details on using hashes here.

File details

Details for the file maingopy-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for maingopy-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 09cea3a2c7d3b121cbf9cea146ce86972e4a0c3aaf288a02855cef8009333b54
MD5 83cd232cb3352968f82586f9b8932463
BLAKE2b-256 560895b403b3bd40a6c0859b4efbeda2bed19d4159a90863da796d1762a1b72d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page