Skip to main content

Juice/MAJIS operations toolbox

Project description

MAJIS Operations Toolbox

Majis operations toolbox logo

Pipeline Status Test coverage Documentation Status Latest release

This toolbox aims to collect MAJIS Operations scripts in a common python package.

The full documentation of the package can be found in majis-ops.readthedocs.io

🚀 Installation

python -m pip install majis-ops

🛰️ Basic examples

🐍 As python package

  • Read a ITL file:
from majis.itl import read_itl

# Load absolute time ITL as EventsDict object
itl_abs = read_itl('absolute_time.itl')

# Load relative time ITL as EventsList object
itl_rel = read_itl('relative_time.itl', refs='events.evf', flat=True)

Note: Relative datetime can be provided either with a EVF file or inline with one or multiple strings: DATETIME REF_NAME (COUNT = N)

  • Export one (or multiple) ITL blocks:
from majis.itl import save_itl, save_csv, save_xlsm

# Export as absolute ITL
save_itl('output.itl', itl_abs, itl_rel, )

# Export as relative ITL
save_itl('output.itl', itl_abs, itl_rel, , ref='DATETIME  REF_NAME (COUNT = N)')

# Export as CSV
save_csv('output.csv', itl_abs, itl_rel, )

# Export as XLSM timeline w.r.t. C/A reference (based on default template)
save_xlsm('output.xlsm', itl_abs, ca_ref='DATETIME  REF_CA (COUNT = N)')

# Append to an existing XLSM timeline
save_xlsm(None, itl_abs, timeline='timeline.xlsm')

Notes:

  • When multiple ITL are provided, they will be concatenate and ordered by date.

  • Absolute and relative ITL are compatible.

  • Export can be either absolute or relative to a reference.

  • Observation block must not overlap.

  • Manipulate MAJIS timeline (.xlsm file):

>>> from majis import Timeline

>>> timeline = Timeline(timeline='timeline.xlsm')

# Get template version
>>> template.version
<Version('2.0')>

# Get template changelog
>>> template.log
'>>>    2.0 | 2024-06-04 | Vincent Carlier'
'Empty template with 500 lines pre-filled with formulas and data validation format'
'...'
'>>>    1.0 | 2022-11-08 | François Poulet'
'creation'

# Get science changelog
>>> template.science
''  # Empty by default

# Get the number of observations
>>> len(timeline)
10

# Get the list of observations
>>> timeline['OBS_NAME']
['OBS_001', ...]

# Get an observation details
>>> timeline[1]
{'OBS_NAME': 'OBS_001', 'start_angle': 1.5, ...}

# Get an observation property
>>> timeline['start_angle', 1]
1.5

# Append new observations from ITL file
>>> timeline.append('absolute_time.itl')

# Edit a single field
>>> timeline['start_angle', 1] = -1.5
>>> timeline['start_angle', 1]
-1.5

# Save to the same XLSM timeline
>>> timeline.save()

# Create a new timeline from the default template and a relative ITL file
>>> timeline = Timeline('relative_time.itl', refs='events.evf')

# Compute all relative time w.r.t. to a C/A reference
>>> timeline.ca_ref = '2032-09-24T21:33:36 PERIJOVE_12PJ (COUNT = 1)'
>>> timeline['First CU_frame start wrt C/A', 1]
'-001.18:35:25'

# Export the timeline to a new file
>>> timeline.save('new_timeline.xlsm')

👾 As command line interface

$ majis-itl --help

usage: majis-itl [-h] [-o output.[itl|csv|xlsm]] [-f]
                 [-t "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)"]
                 [-r "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)"]
                 [--timeline timeline.xlsm] [--header "# my-custom-header"]
                 [--overlap] [--csv] [--csv-sep separator]
                 [input.itl ...]

MAJIS ITL toolbox

positional arguments:
  input.itl             Input ITL filename(s). If multiple files are provided
                        they will be concatenated.

options:
  -h, --help            show this help message and exit
  -o output.[itl|csv|xlsm], --output output.[itl|csv|xlsm]
                        Output filename, it could be either ITL, CSV or XLSM.
                        If none provided, the results will be displayed (only
                        for ITL and CSV).
  -f, --force           Overwrite the output file if already exists.
  -t "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)", --time-ref "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)"
                        Input events time reference(s). If multiple values are
                        required use an `events.evf` file.
  -r "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)", --relative-to "YYYY-MM-DDTHH:MM:SS REF_NAME (COUNT = N)"
                        Reference time to be used for relative time output.
  --timeline timeline.xlsm
                        Original timeline to append. If no explicit `--output`
                        is provided new observations will be append in this
                        file.
  --header "# my-custom-header"
                        ITL custom file header.
  --overlap             Allow blocks overlap.
  --csv                 Display the ITL as CSV.
  --csv-sep separator   CSV separator (default: ";")

Examples:

  • Convert a single ITL with relative time as an absolute CSV ITL file:
majis-itl relative_time.itl --time-ref "2032-09-24T21:33:36 PERIJOVE_12PJ (COUNT = 1)" --output output.csv
  • Concatenate two ITL with absolute and relative times as an relative ITL file:
majis-itl absolute_time.itl relative_time.itl --ref-time events.evf --relative-to "2032-09-24T21:33:36 PERIJOVE_12PJ (COUNT = 1)" --output output.itl

Note: If no --output flag is present, the output is display in the console.

  • Create a new MAJIS timeline (.xlsm) from a ITL the default template.
majis-itl absolute_time.itl --output output.xlsm
  • Edit an existing MAJIS timeline to compute relative time w.r.t. C/A reference.
majis-itl --timeline timeline.xlsm --relative-to "2032-09-24T21:33:36 PERIJOVE_12PJ (COUNT = 1)"

Note: If no --output flag is present, the output will be save in the original template.

👐 Contribution

If you want to contribute to this project, you need to install hatch on your system, then clone the depot and install de default env:

git clone https://git.ias.u-psud.fr/majis_sgs/operations/majis-ops-toolbox.git
cd majis-ops-toolbox

# Install dev dependencies
hatch env create

# Setup pre-commit hook
hatch -e linter run pre-commit install

To lint and format the source code:

hatch -e linter run check
hatch -e linter run format

To test the module:

hatch -e tests run tests

To build the docs:

hatch -e docs run build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

majis_ops-1.0.0.tar.gz (397.1 kB view details)

Uploaded Source

Built Distribution

majis_ops-1.0.0-py3-none-any.whl (125.8 kB view details)

Uploaded Python 3

File details

Details for the file majis_ops-1.0.0.tar.gz.

File metadata

  • Download URL: majis_ops-1.0.0.tar.gz
  • Upload date:
  • Size: 397.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for majis_ops-1.0.0.tar.gz
Algorithm Hash digest
SHA256 131cebc4f1a217dbb20cde0fa431b5217532e2ce33f34de7817053a4188f8b79
MD5 3fcf641e8486f6a7cacf0c2c39664d26
BLAKE2b-256 03d4c0762114a8381fcfa20ef1b3ad8b48a7ebff2adb0edf2421f7a0e597331e

See more details on using hashes here.

File details

Details for the file majis_ops-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: majis_ops-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 125.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.0

File hashes

Hashes for majis_ops-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 204d25ab35ff5a8668486bad0f215af5c4cdaddc639bcd9a884d5d459474692c
MD5 b067d0a151d1e7c723f0e74cf50258fc
BLAKE2b-256 70add4a33a685a78e9888ee3569eeffcb4ebcfc477c3a552ef18c9d6e947710d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page