No project description provided
Project description
malib
A few utilities that I find useful.
RateLimiter
from malib import RateLimiter
# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60)
# call .wait() every time before calling the function
rl.wait()
Exact cover
Code inspired by this blog post.
from malib import exact_cover
piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")
PyTorch bivariate normal cdf
Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.
Requires scipy and pytorch.
import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf
# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])
# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])
PyTorch interpolation
import torch
from malib import interp
x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])
Testing
pytest
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
malib-0.4.0.tar.gz
(3.2 kB
view details)
Built Distribution
malib-0.4.0-py3-none-any.whl
(4.4 kB
view details)
File details
Details for the file malib-0.4.0.tar.gz
.
File metadata
- Download URL: malib-0.4.0.tar.gz
- Upload date:
- Size: 3.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 062cdd4a0d709df429cf8366d426e94912b7a19c2061defc8d75c23c6e2d330f |
|
MD5 | 7bb4557d1ec5089206d61796da0187ec |
|
BLAKE2b-256 | 6d5ac167c52ce53503958f27832647c514165511844dcafe3c5f36e7c1ac36a7 |
File details
Details for the file malib-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: malib-0.4.0-py3-none-any.whl
- Upload date:
- Size: 4.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5f6baa7b9ebd0cb0183a1cea405ab3a0183b58c758d5abde916660f7a523e9c |
|
MD5 | e1eebbaf7ad6b0a2675b3fc5646cce88 |
|
BLAKE2b-256 | 378932a20424395bc2b949d4007c528e5b558f166bbbd8375b6353c3e07208b8 |