Skip to main content

No project description provided

Project description

malib

A few utilities that I find useful.

RateLimiter

from malib import RateLimiter

# call a function at most 10 times per minute
rl = RateLimiter(max_calls=10, period=60) 
# call .wait() every time before calling the function
rl.wait()

ttl_cache

from malib import ttl_cache
from time import sleep


@ttl_cache(ttl=1)
def f():
    print("computing")
    return "result"


print(f()) # prints "computing"
print(f()) # cached
sleep(1)
print(f()) # prints "computing"

Exact cover

Code inspired by this blog post.

from malib import exact_cover

piece_to_constraints = {"A": {1}, "B": {2, 4}, "C": {2, 3, 5}, "D": {3, 5}}
next(exact_cover(piece_to_constraints))
# ("A", "B", "D")

PyTorch bivariate normal cdf

Provide two functions to compute a differentiable cumulative distribution function of a bivariate normal distribution.

Requires scipy and pytorch.

import torch
from malib import standard_bivariate_normal_cdf, bivariate_normal_cdf

# standard bivariate normal cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
cor = 0.5
y = standard_bivariate_normal_cdf(x, cor)
print(y)
# tensor(0.3333, grad_fn=<StandardBivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

# bivariate_normal_cdf
x = torch.tensor([0.0, 0.0], requires_grad=True)
mean = torch.tensor([0.0, 0.0])
cov = torch.tensor([[1.0, 0.5], [0.5, 1.0]])
y = bivariate_normal_cdf(x, mean, cov)
print(y)
# tensor(0.3333, grad_fn=<BivariateNormalCDFBackward>)
y.backward()
print(x.grad)
# tensor([0.1995, 0.1995])

PyTorch interpolation

import torch
from malib import interp

x = torch.tensor([0.0, 1.0, 2.0])
y = torch.tensor([0.0, 1.0, 4.0])
interp(torch.tensor([0.5, 1.5]), x, y)
# tensor([0.5000, 2.5000])

Async to sync generator

The sync_gen function allows you to convert an asynchronous generator into a synchronous one. This can be useful when you want to use async code in a synchronous context.

import asyncio
from malib import sync_gen

async def async_generator():
    for i in range(5):
        await asyncio.sleep(0.1)
        yield i

# Convert async generator to sync generator
sync_generator = sync_gen(async_generator())

# Use the sync generator in a regular for loop
for item in sync_generator:
    print(item)

Testing

poetry install --with dev
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malib-0.8.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

malib-0.8.0-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file malib-0.8.0.tar.gz.

File metadata

  • Download URL: malib-0.8.0.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.8.0.tar.gz
Algorithm Hash digest
SHA256 f99380a6d329209983734685c291f30bae976b91c947d4ffc3867a32017c277f
MD5 1b36585131d09bfd9bda4d8459061815
BLAKE2b-256 49c3a4c405686fd65e13e5b33e8a4ee9b7242ac96f6c3c4ebd8b01536e1a992b

See more details on using hashes here.

File details

Details for the file malib-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: malib-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.5

File hashes

Hashes for malib-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b21f551d56d6c2f10962a5ae8df517c41721e44e2f146cf2da867b0d13bfda92
MD5 6bda7fd3f93dad5bffc8e31973e95d77
BLAKE2b-256 b51e117befaefe9754782c7c5f4f5d8fa2bcf4b7a35a7db031237826ef7ef17a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page