Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate system development using machine learning algorithms.

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.14)

  • matplotlib (>= 1.3)

  • pandas (>= 0.13)

  • jinja2 (>= 2.7)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
cls.execute()
cls.make_report('classification_result')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
cls = MALSS(boston.data, boston.target, task='regression')
cls.execute()
cls.make_report('regression_result')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malss-0.1.0.zip (13.7 kB view details)

Uploaded Source

File details

Details for the file malss-0.1.0.zip.

File metadata

  • Download URL: malss-0.1.0.zip
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.1.0.zip
Algorithm Hash digest
SHA256 34a8aa36a9e3f397e050d3bb8361e18d5908cee22156b3c3f9ebc36df839ba6f
MD5 82254093c8c8592c9766b1b7b4d7fb13
BLAKE2b-256 752ffecf7178fc60b8490092751d05897276479127ad7ba4451a02b95567e9c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page