Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate system development using machine learning algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.14)

  • matplotlib (>= 1.3)

  • pandas (>= 0.13)

  • jinja2 (>= 2.7)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
cls = MALSS(boston.data, boston.target, task='regression')
cls.execute()
cls.make_report('regression_result')
cls.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
algorithms = cls.get_algorithms()
# check algorithms here
cls.remove_algorithm(0)
cls.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.2.0.zip (138.4 kB view details)

Uploaded Source

malss-0.2.0.tar.gz (109.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.2.0.win-amd64.exe (238.4 kB view details)

Uploaded Source

File details

Details for the file malss-0.2.0.zip.

File metadata

  • Download URL: malss-0.2.0.zip
  • Upload date:
  • Size: 138.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.2.0.zip
Algorithm Hash digest
SHA256 abb948747acfb2e1fe2a5bce2fee5a5b7211163d23e19ea317a713292eb16a44
MD5 340556676e9d19bc234ffb15e4d97e85
BLAKE2b-256 3db54711ae7efb8c30f1b736bcdff526f0e7bff9a5ce2d86f5562a36376faed9

See more details on using hashes here.

File details

Details for the file malss-0.2.0.tar.gz.

File metadata

  • Download URL: malss-0.2.0.tar.gz
  • Upload date:
  • Size: 109.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.2.0.tar.gz
Algorithm Hash digest
SHA256 39b33b68355d3e47f03ff78855aedab705e5fbbee81aa2e1ee951513793ef6c0
MD5 644bb5b08c3f327c4413bdf8f692f352
BLAKE2b-256 e0f2c271bfa1bb427e4b3995b5d387f073aaf2f1d66711b5b35227ca38be1749

See more details on using hashes here.

File details

Details for the file malss-0.2.0.win-amd64.exe.

File metadata

  • Download URL: malss-0.2.0.win-amd64.exe
  • Upload date:
  • Size: 238.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.2.0.win-amd64.exe
Algorithm Hash digest
SHA256 acd34ee18ae01f56ac3d407026f855c6ec55c04ed6ed98347f97b0622e2f8105
MD5 f4ed0d6001fca02e28496a721cf42ac0
BLAKE2b-256 805bfa5b70a72fbaac8e316b945e25cecf9d467430c62e8661015225fbcbc778

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page