Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.14)

  • matplotlib (>= 1.3)

  • pandas (>= 0.13)

  • jinja2 (>= 2.7)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
cls = MALSS(boston.data, boston.target, task='regression')
cls.execute()
cls.make_report('regression_result')
cls.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
algorithms = cls.get_algorithms()
# check algorithms here
cls.remove_algorithm(0)
cls.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.2.1.zip (143.2 kB view details)

Uploaded Source

malss-0.2.1.tar.gz (115.3 kB view details)

Uploaded Source

File details

Details for the file malss-0.2.1.zip.

File metadata

  • Download URL: malss-0.2.1.zip
  • Upload date:
  • Size: 143.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.2.1.zip
Algorithm Hash digest
SHA256 f83db0b126986dbe124271dd1cb277042a556712163dffe47fc7a85dcb31dac7
MD5 5e87b9852268f15b6773529cd95542c8
BLAKE2b-256 9def6e16cc43639a894d677a1abfa28faca0be2b61a762a1181ba0dcfde62f75

See more details on using hashes here.

File details

Details for the file malss-0.2.1.tar.gz.

File metadata

  • Download URL: malss-0.2.1.tar.gz
  • Upload date:
  • Size: 115.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.2.1.tar.gz
Algorithm Hash digest
SHA256 cd7f2045d8b69968a0007e6a7566ca2b0e1030e56c6ce1e3f86d890feeea4e65
MD5 353a6d269ca2a1895480eb5746adc819
BLAKE2b-256 af2d57aa9af949c0041a0da4bb38860794d13f48105a04ce5ae74254d825dc67

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page