Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.4.10.zip (153.5 kB view details)

Uploaded Source

malss-0.4.10.tar.gz (125.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.4.10.win-amd64.exe (244.4 kB view details)

Uploaded Source

File details

Details for the file malss-0.4.10.zip.

File metadata

  • Download URL: malss-0.4.10.zip
  • Upload date:
  • Size: 153.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.10.zip
Algorithm Hash digest
SHA256 31407ae2063cec68b26e9dae876ee2ae4a3f8137e0ca69678ddc1e035ebce569
MD5 4a5a2ab0d211411156a8f24e3eee9b16
BLAKE2b-256 fd7f6dcd4c96da980fd1fedd4ff785935792834d3aa3595afe64c9d7e53294d3

See more details on using hashes here.

File details

Details for the file malss-0.4.10.tar.gz.

File metadata

  • Download URL: malss-0.4.10.tar.gz
  • Upload date:
  • Size: 125.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.10.tar.gz
Algorithm Hash digest
SHA256 fd0bc1cfbd3f5089925addb9ba7b7c48f9e253ba307e146044021272b0a034ef
MD5 708833d3c148bf124a3388fdee88c273
BLAKE2b-256 a3790bc40657860ab49366b869870e6e91dcef85b1e5c5bb9411809226a26e1a

See more details on using hashes here.

File details

Details for the file malss-0.4.10.win-amd64.exe.

File metadata

  • Download URL: malss-0.4.10.win-amd64.exe
  • Upload date:
  • Size: 244.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.10.win-amd64.exe
Algorithm Hash digest
SHA256 93d95e2ce544c897e233601cb6f48443605550f506852b1aa41e53289b05390f
MD5 d967820958e267d15f725f6939c760e2
BLAKE2b-256 8e6a67fc94f11fed84b80116e1565349c390b9736051b8f284d2adc5ab4c205c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page