Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
cls = MALSS(boston.data, boston.target, task='regression')
cls.execute()
cls.make_report('regression_result')
cls.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
cls = MALSS(iris.data, iris.target, task='classification')
algorithms = cls.get_algorithms()
# check algorithms here
cls.remove_algorithm(0)
cls.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
cls.execute()
cls.make_report('classification_result')
cls.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.4.2.zip (149.5 kB view details)

Uploaded Source

malss-0.4.2.tar.gz (121.5 kB view details)

Uploaded Source

Built Distribution

malss-0.4.2.win-amd64.exe (242.7 kB view details)

Uploaded Source

File details

Details for the file malss-0.4.2.zip.

File metadata

  • Download URL: malss-0.4.2.zip
  • Upload date:
  • Size: 149.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.2.zip
Algorithm Hash digest
SHA256 ce337dd0a00c710abf4ed3a456e2becd94997ff51572718824b29b037a8fde9f
MD5 190f96fb68527f27f74cc8ca0e2fabc4
BLAKE2b-256 dfaaead905359813b609be6e08e4139aab99d315e8853d84749d0527988094f2

See more details on using hashes here.

File details

Details for the file malss-0.4.2.tar.gz.

File metadata

  • Download URL: malss-0.4.2.tar.gz
  • Upload date:
  • Size: 121.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.2.tar.gz
Algorithm Hash digest
SHA256 4efdb7f48e9fa9e05d4ac89b036805667844802f9f5db78eb72a43d978dec910
MD5 a32b32dcabbe5701342ad6ee07df4431
BLAKE2b-256 3959e84673bca3e68689736fa900df5d0dd99ba78ce00549b30ff4c821b955fb

See more details on using hashes here.

File details

Details for the file malss-0.4.2.win-amd64.exe.

File metadata

  • Download URL: malss-0.4.2.win-amd64.exe
  • Upload date:
  • Size: 242.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.2.win-amd64.exe
Algorithm Hash digest
SHA256 64f7c9dddcb981761e620722218dbdb943318194e5b333121fb33c205c36f118
MD5 54be7bfc4c28e88999166c86be410701
BLAKE2b-256 2935fb4f745a5323120d6fddb39652c5347ddddea93dafaf175db49a3c8fe33e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page