Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.4.8.zip (153.0 kB view details)

Uploaded Source

malss-0.4.8.tar.gz (124.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.4.8.win-amd64.exe (244.0 kB view details)

Uploaded Source

File details

Details for the file malss-0.4.8.zip.

File metadata

  • Download URL: malss-0.4.8.zip
  • Upload date:
  • Size: 153.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.8.zip
Algorithm Hash digest
SHA256 bb6ead9a8a2f7e7ff5a4d25867175b2df4ef0bb30390e610ee41ba54f4e64d41
MD5 8dc2b079ce06a1b1a117e6d95ebf32cd
BLAKE2b-256 426ffb7fd16d535ed6c367aa8b02f16370ed3dcaaa971b4c03976385aa01e29a

See more details on using hashes here.

File details

Details for the file malss-0.4.8.tar.gz.

File metadata

  • Download URL: malss-0.4.8.tar.gz
  • Upload date:
  • Size: 124.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.8.tar.gz
Algorithm Hash digest
SHA256 b2dbfc2fa3e1aa3f995b35f2c2eed53bba23074528c9ed8506606fc027094f43
MD5 7073bb00ebd902fd6dc6068d6c9fdc2a
BLAKE2b-256 611e1889cf5b02fc832982e38efedde8ad30167874bb49f774fab05c83dc00e7

See more details on using hashes here.

File details

Details for the file malss-0.4.8.win-amd64.exe.

File metadata

  • Download URL: malss-0.4.8.win-amd64.exe
  • Upload date:
  • Size: 244.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.8.win-amd64.exe
Algorithm Hash digest
SHA256 187e38a9c32b5990fc30c31b84c5ad5bcf3015126e10f85fe1551a2197846c86
MD5 4ce4bbe60614bf7d57a7fda4c6d87bc4
BLAKE2b-256 4fa644a3188def85f59407fc1c4668a088a4160226e65df111140d36b80351a8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page