Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.make_sample_code('regression_sample_code.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.make_sample_code('classification_sample_code.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.4.9.zip (153.1 kB view details)

Uploaded Source

malss-0.4.9.tar.gz (125.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.4.9.win-amd64.exe (244.1 kB view details)

Uploaded Source

File details

Details for the file malss-0.4.9.zip.

File metadata

  • Download URL: malss-0.4.9.zip
  • Upload date:
  • Size: 153.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.9.zip
Algorithm Hash digest
SHA256 e59ac191871830b247a22b0569e91a61b0854f15666c1820e43f908bd937aae3
MD5 560f4cc4d897be325029cb4f25e443fb
BLAKE2b-256 56ded5793342f3ef4603bc8ed5ce846b996fe2a9f4e752d4181ccc4e7d192b1c

See more details on using hashes here.

File details

Details for the file malss-0.4.9.tar.gz.

File metadata

  • Download URL: malss-0.4.9.tar.gz
  • Upload date:
  • Size: 125.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.9.tar.gz
Algorithm Hash digest
SHA256 81332e8fcb1d803a4b662cff2ab51713963feed1ee922f0d08a0aecf7b2292db
MD5 f285bddb396a03d407891bc54361ef9e
BLAKE2b-256 28088de0e1c6c6434dab914e8ff5e6163b403d97e59615ec79e5e07d5ad5462e

See more details on using hashes here.

File details

Details for the file malss-0.4.9.win-amd64.exe.

File metadata

  • Download URL: malss-0.4.9.win-amd64.exe
  • Upload date:
  • Size: 244.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.4.9.win-amd64.exe
Algorithm Hash digest
SHA256 57ab34fd61963a906985f9e00ccaf1632dc6cdaa8ea9f67d0ad5b182c0e979e3
MD5 ceda5c2f91421b4abf864d8b01f099dc
BLAKE2b-256 1edfd8342d14afe64b7132656b720155759135caac4d76a085358a27cf3eb341

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page