Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.5.0.zip (154.0 kB view details)

Uploaded Source

malss-0.5.0.tar.gz (125.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.5.0.win-amd64.exe (245.0 kB view details)

Uploaded Source

File details

Details for the file malss-0.5.0.zip.

File metadata

  • Download URL: malss-0.5.0.zip
  • Upload date:
  • Size: 154.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.0.zip
Algorithm Hash digest
SHA256 4c0c381c1924c131db331421061e02999bed3a9729855e7e4e63427d809b313c
MD5 36d5591510d806f3f1ea479952430a1b
BLAKE2b-256 1b7c89b1edf38f21c7c5b2147569420f22e39593bf55fcc19f8cafbc7aabe281

See more details on using hashes here.

File details

Details for the file malss-0.5.0.tar.gz.

File metadata

  • Download URL: malss-0.5.0.tar.gz
  • Upload date:
  • Size: 125.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.0.tar.gz
Algorithm Hash digest
SHA256 7a66aead81eacea0f31c299a19f51437ebbb6831087e286076d876d26ca39b40
MD5 a67598808def7e59a60e52dc7cce9161
BLAKE2b-256 d9ff72c24c664240ebc21e0545e4ee3c0697778329de8688b76eee583a5eb275

See more details on using hashes here.

File details

Details for the file malss-0.5.0.win-amd64.exe.

File metadata

  • Download URL: malss-0.5.0.win-amd64.exe
  • Upload date:
  • Size: 245.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.0.win-amd64.exe
Algorithm Hash digest
SHA256 d3477c0e96c7d4ddc0ec43ef7cf6ae495ad218b40a33aa529e00c6751f4ab73e
MD5 68cc164f13eb262f5d0dc69dad916286
BLAKE2b-256 09902ed4ddb40aad240ec69a6eef76c9e8fb6b91d88f974a105345b52cc9134f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page