Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7, 3.x’s are not supported)

  • numpy (>= 1.6.1)

  • scipy (>= 0.9)

  • scikit-learn (>= 0.15)

  • matplotlib (>= 1.1)

  • pandas (>= 0.13)

  • jinja2 (>= 2.6)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-0.5.1.zip (154.8 kB view details)

Uploaded Source

malss-0.5.1.tar.gz (126.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-0.5.1.win-amd64.exe (245.1 kB view details)

Uploaded Source

File details

Details for the file malss-0.5.1.zip.

File metadata

  • Download URL: malss-0.5.1.zip
  • Upload date:
  • Size: 154.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.1.zip
Algorithm Hash digest
SHA256 5fc973372a401d1352203696e50bfb5931f0199fd52b47e2428d095cf0270fcc
MD5 09674be1a28a496a5384e8d769afc7f4
BLAKE2b-256 7b96af435b743b953afc9d66387e8a4814d6667a6cf4612f1273be5086dc9a38

See more details on using hashes here.

File details

Details for the file malss-0.5.1.tar.gz.

File metadata

  • Download URL: malss-0.5.1.tar.gz
  • Upload date:
  • Size: 126.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.1.tar.gz
Algorithm Hash digest
SHA256 f1f289a0b8dd0dfbc9fd410c718d97abb0af3f3acff0359ec6d7ed5e0d45eb87
MD5 0f6c6ea360880219c7e206773e6cfbbb
BLAKE2b-256 150bc598411c606ccfecc0913867cb701d49d47cd14c6d91f407cc3b8553aa22

See more details on using hashes here.

File details

Details for the file malss-0.5.1.win-amd64.exe.

File metadata

  • Download URL: malss-0.5.1.win-amd64.exe
  • Upload date:
  • Size: 245.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-0.5.1.win-amd64.exe
Algorithm Hash digest
SHA256 4914499ef95ce3e1758fec3a89dc297502e4d6bdc2767957cd96818719ae067a
MD5 a9721b9162f3fcd8c1c8c4d68b97e80d
BLAKE2b-256 dbbdc6c37cc8e0daee0d968715cfadaa785e40808ddd5dec0a3b85c14702cdf7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page