Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7 or >= 3.4)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.17)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-1.0.0.zip (23.0 kB view details)

Uploaded Source

malss-1.0.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-1.0.0.macosx-10.5-x86_64.exe (83.4 kB view details)

Uploaded Source

File details

Details for the file malss-1.0.0.zip.

File metadata

  • Download URL: malss-1.0.0.zip
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.0.zip
Algorithm Hash digest
SHA256 f69099ef1ef3305fff0f0b50bd49c57e45945599ed2344d7ccf67bc572d7dd76
MD5 f2eb9cd79831bbd5ffd5d1136a4b466c
BLAKE2b-256 f5ca18c00f96eaceb800a09bd8dfd0333665e05ab26b941aeeb245b4e2d3bce1

See more details on using hashes here.

File details

Details for the file malss-1.0.0.tar.gz.

File metadata

  • Download URL: malss-1.0.0.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.0.tar.gz
Algorithm Hash digest
SHA256 82a2094fd0cbe544a147a4b55e57e84f7733c73a6c5e116380f1d9b87bd9e8b4
MD5 fbc71a5869c03eb642d39cc8fe92e30a
BLAKE2b-256 2a459d889755c026c93e9c62402480e6dcb677e2b94ff4b1ca8d0c2fa7002e6b

See more details on using hashes here.

File details

Details for the file malss-1.0.0.macosx-10.5-x86_64.exe.

File metadata

File hashes

Hashes for malss-1.0.0.macosx-10.5-x86_64.exe
Algorithm Hash digest
SHA256 320d84b8e30f7e17ea9929295870473470eaf50bceb448c052c05d961fa68044
MD5 025086c9256b82e87f6838003233245c
BLAKE2b-256 b91c54583e8a7dea584bf19ca28e01b9d546534a8bcb0b6b2fc6c0a970b57eaf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page