Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7 or >= 3.4)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.17)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

Windows

If there are no binary packages matching your Python version you might to try to install these dependencies from Christoph Gohlke Unofficial Windows installers.

Installation

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-1.0.2.zip (22.6 kB view details)

Uploaded Source

malss-1.0.2.tar.gz (15.6 kB view details)

Uploaded Source

File details

Details for the file malss-1.0.2.zip.

File metadata

  • Download URL: malss-1.0.2.zip
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.2.zip
Algorithm Hash digest
SHA256 0f011b5cef9f77371ee8df853c7fff6929002582caa3ebad8e93d3b0be678854
MD5 c83b86e717c6fef01ec65386ead971ab
BLAKE2b-256 2a29e9946fb9d444344f30074047fb032c62bacb4c10708af9fc2d74ccd57bcd

See more details on using hashes here.

File details

Details for the file malss-1.0.2.tar.gz.

File metadata

  • Download URL: malss-1.0.2.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.2.tar.gz
Algorithm Hash digest
SHA256 02dc47a654158262bb3b20428854a3875166de593829a0c3a4b84b6126354877
MD5 6f6d57fb38664d17ade685a5bf888be2
BLAKE2b-256 b851d8b772dc126a4798add8a520396de8079f1e655d921082c3ad18ae84dea3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page