Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 2.7 or >= 3.4)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.17)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

I highly recommend Anaconda. Anaconda conveniently installs packages listed above.

Installation

Do not install package dependencies:

pip install --no-deps malss

Install package dependencies:

pip install malss

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

malss-1.0.3.zip (898.0 kB view details)

Uploaded Source

malss-1.0.3.tar.gz (869.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-1.0.3-py2.py3-none-any.whl (20.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file malss-1.0.3.zip.

File metadata

  • Download URL: malss-1.0.3.zip
  • Upload date:
  • Size: 898.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.3.zip
Algorithm Hash digest
SHA256 6c361facba796b49d1a58e2227609362550afff4c50b6409751ffc24f0957669
MD5 b1e0497c3bd8bb31c769e7e93af36446
BLAKE2b-256 3023b3892c633ef82250bfd413ada75d62559ceb9b8956235da31129c6b5a2ca

See more details on using hashes here.

File details

Details for the file malss-1.0.3.tar.gz.

File metadata

  • Download URL: malss-1.0.3.tar.gz
  • Upload date:
  • Size: 869.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for malss-1.0.3.tar.gz
Algorithm Hash digest
SHA256 65b72c05be3d416136f73aea8a0c7608ed6835208f549c5342b52c7706b41125
MD5 3b82ea66eee56e008e570be0ee6f1fc8
BLAKE2b-256 0ba663fc6c73dc4800fcd2c1d31bdd06e98e856c84ec878bf6d0f45ade2e71e0

See more details on using hashes here.

File details

Details for the file malss-1.0.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for malss-1.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 36edf8d26d22f53e7de00c84ead175a1072f5fe19e8010f70719722b20929133
MD5 5497bb4586a959ba26db7b4a8f636c00
BLAKE2b-256 ee00f04640d7503f6ea8a4cc8573c38b9b921ddf9fc24ea17837e1efdf9e5968

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page