Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 3.5)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.18)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

I highly recommend Anaconda. Anaconda conveniently installs packages listed above.

Installation

If you already have a working installation of numpy and scipy:

pip install malss

If you have not installed numpy or scipy yet, you can also install these using pip.

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

malss-2.0.0-py3.7.egg (1.5 MB view details)

Uploaded Egg

malss-2.0.0-py2.py3-none-any.whl (73.6 kB view details)

Uploaded Python 2Python 3

File details

Details for the file malss-2.0.0-py3.7.egg.

File metadata

  • Download URL: malss-2.0.0-py3.7.egg
  • Upload date:
  • Size: 1.5 MB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for malss-2.0.0-py3.7.egg
Algorithm Hash digest
SHA256 f51329f088e92f2f2f56fecfb0a44870d000ab27e974ff90eb671bc9a8892120
MD5 e70abd577f66a3bd1905b093de340ead
BLAKE2b-256 014439a08bba9ce485a80a70992a211b5bd2a4d0c010db68d01ea52c01026091

See more details on using hashes here.

File details

Details for the file malss-2.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: malss-2.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 73.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for malss-2.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d1fd7e9416cdda0a7b76ebc00516dd38184ab77d63cec98478d50445d267be8e
MD5 db66c90318c1388578a5838f9cba9e35
BLAKE2b-256 147e5475e0fda2a8f00c2878ac1466d302d953cd3cf56ba321907b84adc28b13

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page