MALSS: MAchine Learning Support System
Project description
malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.
Requirements
These are external packages which you will need to install before installing malss.
python (>= 3.5)
numpy (>= 1.10.2)
scipy (>= 0.16.1)
scikit-learn (>= 0.18)
matplotlib (>= 1.5.1)
pandas (>= 0.14.1)
jinja2 (>= 2.8)
I highly recommend Anaconda. Anaconda conveniently installs packages listed above.
Installation
If you already have a working installation of numpy and scipy:
pip install malss
If you have not installed numpy or scipy yet, you can also install these using pip.
Example
Classification:
from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')
Regression:
from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')
Change algorithm:
from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
[{'n_estimators': [10, 30, 50],
'max_depth': [3, 5, None],
'max_features': [0.3, 0.6, 'auto']}],
'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')
API
View the documentation here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file malss-2.0.2-py2.py3-none-any.whl.
File metadata
- Download URL: malss-2.0.2-py2.py3-none-any.whl
- Upload date:
- Size: 1.4 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
944eb55d3e3f396a19c5026928a45bdc196ea3ca222c7b6f2f6ea48a235e5042
|
|
| MD5 |
be43240705a647cbe3a3c36e2bebb30c
|
|
| BLAKE2b-256 |
784c1722b6388845f03eefad858e91c0f71e3e8e9212eb67b01fdcfba5bb9f59
|