Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 3.5)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.18)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

I highly recommend Anaconda. Anaconda conveniently installs packages listed above.

Installation

If you already have a working installation of numpy and scipy:

pip install malss

If you have not installed numpy or scipy yet, you can also install these using pip.

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-2.0.2-py2.py3-none-any.whl (1.4 MB view details)

Uploaded Python 2Python 3

File details

Details for the file malss-2.0.2-py2.py3-none-any.whl.

File metadata

  • Download URL: malss-2.0.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for malss-2.0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 944eb55d3e3f396a19c5026928a45bdc196ea3ca222c7b6f2f6ea48a235e5042
MD5 be43240705a647cbe3a3c36e2bebb30c
BLAKE2b-256 784c1722b6388845f03eefad858e91c0f71e3e8e9212eb67b01fdcfba5bb9f59

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page