Skip to main content

MALSS: MAchine Learning Support System

Project description

malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.

https://travis-ci.org/canard0328/malss.svg?branch=master

Requirements

These are external packages which you will need to install before installing malss.

  • python (>= 3.6)

  • numpy (>= 1.10.2)

  • scipy (>= 0.16.1)

  • scikit-learn (>= 0.19)

  • matplotlib (>= 1.5.1)

  • pandas (>= 0.14.1)

  • jinja2 (>= 2.8)

I highly recommend Anaconda. Anaconda conveniently installs packages listed above.

Installation

If you already have a working installation of numpy and scipy:

pip install malss

If you have not installed numpy or scipy yet, you can also install these using pip.

Example

Classification:

from malss import MALSS
from sklearn.datasets import load_iris
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

Regression:

from malss import MALSS
from sklearn.datasets import load_boston
boston = load_boston()
clf = MALSS('regression')
clf.fit(boston.data, boston.target, 'regression_result')
clf.generate_module_sample('regression_module_sample.py')

Change algorithm:

from malss import MALSS
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier as RF
iris = load_iris()
clf = MALSS('classification')
clf.fit(iris.data, iris.target, algorithm_selection_only=True)
algorithms = clf.get_algorithms()
# check algorithms here
clf.remove_algorithm(0)
clf.add_algorithm(RF(n_jobs=3),
                  [{'n_estimators': [10, 30, 50],
                    'max_depth': [3, 5, None],
                    'max_features': [0.3, 0.6, 'auto']}],
                  'Random Forest')
clf.fit(iris.data, iris.target, 'classification_result')
clf.generate_module_sample('classification_module_sample.py')

API

View the documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

malss-2.1.2.tar.gz (61.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

malss-2.1.2-py2.py3-none-any.whl (1.2 MB view details)

Uploaded Python 2Python 3

File details

Details for the file malss-2.1.2.tar.gz.

File metadata

  • Download URL: malss-2.1.2.tar.gz
  • Upload date:
  • Size: 61.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for malss-2.1.2.tar.gz
Algorithm Hash digest
SHA256 1a2091b072ac2c0b34580e444890207490bfa15750dbe4aecbe156b7d0c405d3
MD5 94f4096c81106195c1c13795f6cc9d5a
BLAKE2b-256 bc9057139412c658ae16b52fe074bd06380d958368f37a5e8712359d713730fd

See more details on using hashes here.

File details

Details for the file malss-2.1.2-py2.py3-none-any.whl.

File metadata

  • Download URL: malss-2.1.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for malss-2.1.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7ffae5d2351e7de39ee5a2e7475e3ce61b02399399b8df3963301036ff0914de
MD5 422f13ff69715c53fd2c8acade6d9d74
BLAKE2b-256 1b749dff6f7eefb8f6c87973d51f392e1285387ed92ad375225467a70488672d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page