MALSS: MAchine Learning Support System
Project description
malss is a python module to facilitate machine learning tasks. This module is written to be compatible with the scikit-learn algorithms and the other scikit-learn-compatible algorithms.
Dependencies
malss requires:
- python (>= 3.6)
- numpy (>= 1.10.2)
- scipy (>= 0.16.1)
- scikit-learn (>= 0.19)
- matplotlib (>= 1.5.1)
- pandas (>= 0.14.1)
- jinja2 (>= 2.8)
- PyQt5 (>= 5.12) (only for interactive mode)
All modules except PyQt5 are automatically installed when installing malss.
Installation
pip install malss
For interactive mode, you need to install PyQt5 using pip.
pip install PyQt5
Example
Classification:
from malss import MALSS from sklearn.datasets import load_iris iris = load_iris() clf = MALSS(task='classification', lang='en') clf.fit(iris.data, iris.target, 'classification_result') clf.generate_module_sample('classification_module_sample.py')
Regression:
from malss import MALSS from sklearn.datasets import load_boston boston = load_boston() clf = MALSS(task='regression', lang='en') clf.fit(boston.data, boston.target, 'regression_result') clf.generate_module_sample('regression_module_sample.py')
Change algorithm:
from malss import MALSS from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier as RF iris = load_iris() clf = MALSS(task='classification', lang='en') clf.fit(iris.data, iris.target, algorithm_selection_only=True) algorithms = clf.get_algorithms() # check algorithms here clf.remove_algorithm(0) # remove the first algorithm # add random forest classifier clf.add_algorithm(RF(n_jobs=3), [{'n_estimators': [10, 30, 50], 'max_depth': [3, 5, None], 'max_features': [0.3, 0.6, 'auto']}], 'Random Forest') clf.fit(iris.data, iris.target, 'classification_result') clf.generate_module_sample('classification_module_sample.py')
Interactive mode:
In the interactive mode, you can interactively analyze data through a GUI.
from malss import MALSS MALSS(lang='en', interactive=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size malss-2.2.4-py2.py3-none-any.whl (1.2 MB) | File type Wheel | Python version py2.py3 | Upload date | Hashes View |
Filename, size malss-2.2.4.tar.gz (62.6 kB) | File type Source | Python version None | Upload date | Hashes View |
Close
Hashes for malss-2.2.4-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfc607f38249c4358d0f0d2e620ef918a073843c98e925c5012069f5d9f28d83 |
|
MD5 | 9c8e8beaba778bf6e1d7c22a8e6dff33 |
|
BLAKE2-256 | 7f0f43e6f4c330e182b5e8ff2125095525bc2eb3c97e61cb9dac2b7ca7ecc176 |