Skip to main content

MambaByte - Pytorch

Project description

Multi-Modality

MambaByte

Implementation of MambaByte in "MambaByte: Token-free Selective State Space Model" in Pytorch and Zeta. Note this will be a higher performance implementation of Mamba with parallel scan

Installation

pip install mambabyte

Usage

import torch 
from mambabyte import MambaConfig, Mamba

x = torch.randn(2, 3, 4)
config = MambaConfig(
    dim = 4,
    depth = 3,
    dt_rank = 2,
    d_state = 2,
    expand_factor = 2,
    d_conv = 3,
    dt_min = 0.001,
    dt_max = 0.1,
    dt_init = "random",
    dt_scale = 1.0,
    bias = False,
    conv_bias = True,
    pscan = True
)

model = Mamba(config)

out = model(x)

print(out)

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mambabyte-0.0.2.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

mambabyte-0.0.2-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file mambabyte-0.0.2.tar.gz.

File metadata

  • Download URL: mambabyte-0.0.2.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for mambabyte-0.0.2.tar.gz
Algorithm Hash digest
SHA256 47a27a4b659d8ec3b145bbac8fb1d67001faceaac29b78fa8e983ff46ff5b0d3
MD5 97966bbbb548de331358c0c8d4e4fdcf
BLAKE2b-256 7d2ea060a4da585b800439adeadf3d692a0d5d61a1b59ae823f8d6a850461da4

See more details on using hashes here.

File details

Details for the file mambabyte-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: mambabyte-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.11.0 Darwin/22.4.0

File hashes

Hashes for mambabyte-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1545a1276449a9d5cb3a0f3ee65779a6b6a48e701699e734a95822d22c9f59cb
MD5 c787007ccbb1294eee1f8e716dc24dd5
BLAKE2b-256 06a7a79de0f8b0e09fc430f168a222946d50f5d7842b07655d7865b67dd22272

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page