Skip to main content

A Comprehensive Multimodal Argument Mining Toolkit.

Project description



| 🌐 Website | 📚 Documentation | 🤝 Contributing |

MAMKit: Multimodal Argument Mining Toolkit

A Comprehensive Multimodal Argument Mining Toolkit.

Table of Contents

Introduction

MAMKit is an open-source, publicly available PyTorch toolkit designed to access and develop datasets, models, and benchmarks for Multimodal Argument Mining (MAM). It provides a flexible interface for accessing and integrating datasets, models, and preprocessing strategies through composition or custom definition. MAMKit is designed to be extendible, ensure replicability, and provide a shared interface as a common foundation for experimentation in the field.

At the time of writing, MAMKit offers 4 datasets, 4 tasks and 6 distinct model architectures, along with audio and text processing capabilities, organized in 5 main components.

Datasets Tasks
UkDebates Argumentative Sentence Detection (ASD)
MArgγ Argumentative Relation Classification (ARC)
MM-USED Argumentative Sentence Detection (ASD)
Argumentative Component Classification (ACC)
MM-USED-fallacy Argumentative Fallacy Classification (AFC)
Model Text Encoding Audio Encoding Fusion
BiLSTM GloVe + BiLSTM (Wav2Vec2 ∨ MFCCs) + BiLSTM Conat-Late
MM-BERT BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
MM-RoBERTa RoBERTa (Wav2Vec2 ∨ HuBERT ∨ WavLM) + BiLSTM Concat-Late
CSA BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Concat-Early
Ensemble BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Avg-Late
Mul_TA BERT (Wav2Vec2 ∨ HuBERT ∨ WavLM) + Transformer Cross

🔧 Installation

Clone the repository and install the requirements:

git clone git@github.com:TBA_AFTER_ACCEPTANCE/mamkit.git
cd MAMKit
pip install -r requirements.txt

⚙️ Usage

Data

MAMKit provides a modular interface for defining datasets or allowing users to load datasets from the literature.

Load a Dataset

In the example that follows, illustrates how to load a dataset. In this case, a dataset is loaded using the MMUSED class from mamkit.data.datasets, which extends the Loader interface and implements specific functionalities for data loading and retrieval. Users can specify task and input mode (text-only, audio-only, or text-audio) when loading the data, with options to use default splits or load splits from previous works. The example uses splits from Mancini et al. (2022).

The get_splits method of the loader returns data splits in the form of a data.datasets.SplitInfo. The latter wraps split-specific data, each implementing PyTorch's Dataset interface and compliant to the specified input modality (i.e., text-only).

from mamkit.data.datasets import UKDebates, InputMode

loader = UKDebates(
          task_name='asd',
          input_mode=InputMode.TEXT_ONLY,
          base_data_path=base_data_path)


split_info = loader.get_splits('mancini-et-al-2022')

The Loader interface also allows users to integrate methods defining custom splits as follows:

from mamkit.data.datasets import SplitInfo

def custom_splits(self) -> List[SplitInfo]:
    train_df = self.data.iloc[:50]
    val_df = self.data.iloc[50:100]
    test_df = self.data.iloc[100:]
    fold_info = self.build_info_from_splits(train_df=...)
    return [fold_info]
              
loader.add_splits(method=custom_splits,
                  key='custom')

split_info = loader.get_splits('custom')

Add a New Dataset

To add a new dataset, users need to create a new class that extends the Loader interface and implements the required functionalities for data loading and retrieval. The new class should be placed in the mamkit.data.datasets module.

Modelling

The toolkit provides a modular interface for defining models, allowing users to compose models from pre-defined components or define custom models. In particular, MAMkit offers a simple method for both defining custom models and leveraging models from the literature.

Load a Model

The following example demonstrates how to instantiate a model with a configuration found in the literature. This configuration is identified by a key, ConfigKey, containing all the defining information. The key is used to fetch the precise configuration of the model from the configs package. Subsequently, the model is retrieved from the models package and configured with the specific parameters outlined in the configuration.

from mamkit.configs.base import ConfigKey
from mamkit.configs.text import TransformerConfig
from mamkit.data.datasets import InputMode

config_key = ConfigKey(
              dataset='mmused', 
              task_name='asd',
              input_mode=InputMode.TEXT_ONLY,
              tags={'mancini-et-al-2022'})

config = TransformerConfig.from_config(
                           key=config_key)
    
model = Transformer(
         model_card=config.model_card,
         dropout_rate=config.dropout_rate
         ...)

Custom Model Definition

The example below illustrates that defining a custom model is straightforward. It entails creating the model within the models package, specifically by extending either the AudioOnlyModel, TextOnlyModel, or TextAudioModel classes in the models.audio, models.text, or models.text_audio modules, respectively, depending on the input modality handled by the model.

class Transformer(TextOnlyModel):

    def __init__(
            self,
            model_card,
            head,
            dropout_rate=0.0,
            is_transformer_trainable: bool = False,
    ): ...
from mamkit.models.text import Transformer

model = Transformer(
          model_card='bert-base-uncased',
          dropout_rate=0.1, ...)

Training

Our models are designed to be encapsulated into a PyTorch LightningModule, which can be trained using PyTorch Lightning's Trainer class. The following example demonstrates how to wrap and train a model using PyTorch Lightning.

from mamkit.utility.model import to_lighting_model
import lightning

model = to_lighting_model(model=model, 
        num_classes=config.num_classes,
        loss_function=...,
        optimizer_class=...)

trainer = lightning.Trainer(max_epochs=100,
                            accelerator='gpu',
                            ...)
trainer.fit(model,
            train_dataloaders=train_dataloader,
            val_dataloaders=val_dataloader)

Benchmarking

The mamkit.configs package simplifies reproducing literature results in a structured manner. Upon loading the dataset, experiment-specific configurations can be easily retrieved via a configuration key. This enables instantiating a processor using the same features processor employed in the experiment.

In the example below, we adopt a configuration akin to Mancini et al. (2022), employing a BiLSTM model with audio encoded with MFCCs features. Hence, we define a MFCCExtractor processor using configuration parameters.

from mamkit.configs.audio import BiLSTMMFCCsConfig
from mamkit.configs.base import ConfigKey
from mamkit.data.datasets import UKDebates, InputMode
from mamkit.data.processing import MFCCExtractor, UnimodalProcessor
from mamkit.models.audio import BiLSTM

loader = UKDebates(task_name='asd',
           input_mode=InputMode.AUDIO_ONLY)

config = BiLSTMMFCCsConfig.from_config(
                key=ConfigKey(dataset='ukdebates',
                input_mode=InputMode.AUDIO_ONLY,
                task_name='asd',
                tags='mancini-et-al-2022'))


for split_info in loader.get_splits(
                         key='mancini-et-al-2022'):
    processor = 
        UnimodalProcessor(
            features_processor=MFCCExtractor(
                mfccs=config.mfccs, ...))

    split_info.train = processor(split_info.train)
    ...
    model = BiLSTM(embedding_dim=
                    config.embedding_dim, ...)

🧠 Structure

The toolkit is organized into five main components: configs, data, models, modules and utility. In addition to that, the toolkit provides a demos directory for running all the experiments presented in the paper. The figure below illustrates the toolkit's structure.

Toolkit Structure

📚 Website and Documentation

The documentation is available here.

The website is available here.

Our website provides a comprehensive overview of the toolkit, including installation instructions, usage examples, and a detailed description of the toolkit's components. Moreover, the website provides a detailed description of the datasets, tasks, and models available in the toolkit, together with a leaderboard of the results obtained on the datasets with the current models.

🤝 Contributing

We welcome contributions to MAMKit! Please refer to the contributing guidelines for more information.

📧 Contact Us

For any questions or suggestions, don't hesitate to contact us: Eleonora Mancini, Federico Ruggeri.

📖 Citation

If you use MAMKit in your research, please cite the following paper:

@inproceedings{TBAmamkit,
  title={MAMKit: A Comprehensive Multimodal Argument Mining Toolkit},
  author={TBA},
  booktitle={TBA},
  year={TBA}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mamkit-1.0.1.tar.gz (47.5 kB view details)

Uploaded Source

File details

Details for the file mamkit-1.0.1.tar.gz.

File metadata

  • Download URL: mamkit-1.0.1.tar.gz
  • Upload date:
  • Size: 47.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for mamkit-1.0.1.tar.gz
Algorithm Hash digest
SHA256 7eaadecc62aeedf10b1b68b495ef52c03c78bb5d6261aeba96c2cf0ede90f71a
MD5 c294e88c92c1f41a0d02908b83fac1d9
BLAKE2b-256 e4fa15ac5577a80fe5a8488a06a316c6b8bd85fe59ac8f4089c9167bbc3f53fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page