ManGO metadata schemas on iRODS
Project description
Apply ManGO metadata schemas in Python
Small application to apply metadata from a metadata schema using iRODS PRC.
Requirements
python-irodsclient
validators
Installation
You can install the package and its dependencies with pip
:
pip install mango-mdschema
Usage
# authentication to iRODS
import os, os.path
from irods.session import iRODSSession
from mango_mdschema import Schema
env_file = os.getenv('IRODS_ENVIRONMENT_FILE', os.path.expanduser('~/.irods/irods_environment.json'))
# load a schema from file
my_schema = Schema('/path/to/schema') # this also validates it as a schema
with iRODSSession(irods_env_file=env_file) as session:
obj = session.data_objects.get('path/to/my/object')
my_metadata = {
'text' : 'Some text',
'a_date' : '2023-04-26',
'author' : {
'name' : 'Mariana',
'email' : 'mariana.montes@kuleuven.be'
}
}
my_schema.apply(obj, my_metadata)
The apply
function will first validate the provided metadata dictionary
before applying it on the iRODS object. See the tutorial for
more details.
To only validate your metadata, without applying it, you can use the validate
function of the schema.
try:
validated = my_schema.validate(metadata)
except (ConversionError, ValidationError) as err:
print("Oops my metadata was not valid: {err}")
You can check the fields in a schema with:
print(my_schema)
The list of required fields and default values is found as the required_fields
attribute.
You can also check all the characteristics of a specific field such as 'name' with:
my_schema.print_requirements('name') # same as print(my_schema.fields['name'])
You can test the list of AVUs that would be sent by providing a given metadata dictonary like so:
avus = my_schema.to_avus(metadata)
The schema class can also read the metadata from ManGO and return it as
nested dictionary with all values converted to their Python representation (
i.e. integer fields result in int
values, datetime fields in datetime
objects, etc.).
with iRODSSession(irods_env_file=env_file) as session:
obj = session.data_objects.get('path/to/my/object')
my_metadata = my_schema.extract(obj)
Check the tutorial notebook for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mango-mdschema-1.0.2.tar.gz
.
File metadata
- Download URL: mango-mdschema-1.0.2.tar.gz
- Upload date:
- Size: 23.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f05b9130e3966e7c09ac07f4014cd639873aae1af9d5082d7f1b0048d4dbc1d |
|
MD5 | 825286b1fe59f1584cdb12d54e1ca5b9 |
|
BLAKE2b-256 | 8b39ce7a21ea61affa74a58330e2af6c30c5f8428d6111726ed6463a62e059ba |
File details
Details for the file mango_mdschema-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: mango_mdschema-1.0.2-py3-none-any.whl
- Upload date:
- Size: 18.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.0.0 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3250998134bb7ed176e02fa2762882d0a62bc0ef12fb9ec8eac315c149bc0bd8 |
|
MD5 | 70f851017904aec501f6a1d4fdd26da6 |
|
BLAKE2b-256 | e4e54cd98805de3a795491a0b49aa9e76af30bbecc2476ae26266208144288b2 |