Skip to main content

Six-Sigma based analysis of manufacturing data

Project description

Purpose

To provide analysis tools and metrics useful in manufacturing environments.

Go to the documentation.

Project Maturity

Plots and project are reasonably mature at this point. Calculations have been refined and are in-line with commonly accepted standards.

A major v2.0 update is coming to control charts and will be available shortly in manufacturing.alt_vis module. For instance, instead of using from manufacturing import x_mr_chart, you would use from manufacturing.alt_vis import x_mr_chart. The new API should allow for a greater degree of flexibility with recalculation points and the ability to relabel the axes. Additionally, alternative axis labels will be able to be supplied. These changes will eventually become "the way", but are to be considered experimental until the v2.0 update.

Installation

To install from pypi:

$>pip install manufacturing

To install from source download and install using poetry:

$>poetry install

Building

$>poetry update
$>poetry build

Usage

Cpk Visualization

The most useful feature of the manufacturing package is the visualization of Cpk. As hinted previously, the ppk_plot() function is the primary method for display of Cpk visual information. First, get your data into a list, numpy.array, or pandas.Series; then supply that data, along with the lower_control_limit and upper_control_limit into the ppk_plot() function.

manufacturing.ppk_plot(data, lower_specification_limit=-2, upper_specification_limit=2)

Screenshot

In this example, it appears that the manufacturing processes are not up to the task of making consistent product within the specified limits.

Zone Control Visualization

Another useful feature is the zone control visualization.

manufacturing.control_chart(data)

There are X-MR charts, Xbar-R charts, and Xbar-S charts available as well. If you call the control_chart() function, the appropriate sample size will be selected and data grouped as the dataset requires. However, if you wish to call a specific type of control chart, use

  • x_mr_chart
  • xbar_r_chart
  • xbar_s_chart
  • p_chart

Contributions

Contributions are welcome!

RoadMap

Items marked out were added most recently.

  • ...
  • Add use github actions for deployment
  • Transition to poetry for releases
  • Add I-MR Chart (see examples/imr_chart.py)
  • Add Xbar-R Chart (subgroups between 2 and 10)
  • Add Xbar-S Chart (subgroups of 11 or more)
  • Update documentation to reflect recent API changes
  • Add p chart
  • Add np chart
  • Add u chart
  • Add c chart
  • Add automated testing (partially implemented)

Gallery

Ppk example

Cpk example

X-MR Chart

Xbar-R Chart

Xbar-S Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

manufacturing-1.4.1.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

manufacturing-1.4.1-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file manufacturing-1.4.1.tar.gz.

File metadata

  • Download URL: manufacturing-1.4.1.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for manufacturing-1.4.1.tar.gz
Algorithm Hash digest
SHA256 38a7e01a3f0f0427a428dd7b5de8650e5937907e5da13cacd632f94e7002f4f9
MD5 dfc382246528096b4ab8818e9a0d02f5
BLAKE2b-256 39404ad8658fc3825c9efa97c38f56e4b169494e51ecd5669674d50d74f56645

See more details on using hashes here.

File details

Details for the file manufacturing-1.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for manufacturing-1.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ab94b3def753f1fc059824f85ffd175a23329ecac39d279ac45b4bc2086052ce
MD5 83625d55134c2c8aa864046113acd7ab
BLAKE2b-256 c87423e3d3f639733c069e72be67ef1975bce72a9d13e43b861701ae264eb712

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page