Skip to main content

Prediction of lineage-specific gain and loss of sequence elements using phylogenetic maximum parsimony.

Project description

mapGL

Prediction of lineage-specific gain and loss of genomic sequence elements based on phylogenetic maximum parsimony.

Label genomic regions as orthologous, gained in the query species, or lost in the target species, based on inferred presence/absence in the most-recent common ancestor (MRCA). Chained alignment files are used to map features from query to target and one or more outgroup species. Features that map directly from query to target are labeled as orthologs, and ortholgous coordinates in the target species are given in the output. Non-mapping features are assigned as gains or losses based on a maximum-parsimony algorithm predicting presence or absence in the MRCA.

Based on bnMapper.py, by Ogert Denas (James Taylor lab):

Dependencies

numpy Cython six

Usage

mapGL.py [-h] [-o FILE] [-t FLOAT] [-g GAP] [-v {info,debug,silent}] [-k] input tree qname tname alignments [alignments ...]

Required Arguments

Argument Description
input Input regions to process. Should be in standard bed format. Only the first four bed fields will be used.
tree Phylogenetic tree describing relationships of query and target species to outgroups. Must be in standard Newick format. Branch lengths are optional, and will be ignored.
qname Name of the query species. Regions from this species will be mapped to target species coordinates.
tname Name of the target species. Regions from the query species will be mapped to coordinates from this species.
alignments Alignment files (.chain or .pkl): One for the target species and one per outgroup species. Files should be named according to the convention: qname.tname[...].chain.gz, where qname is the query species name and tname is the name of the target/outgroup species. Names used for qname and tname must match names used in the phylogenetic tree.

Options

Option Description
-h, --help Show help message and exit.
-o FILE, --output FILE Output file. (default: stdout)
-t FLOAT, --threshold FLOAT Mapping threshold i.e., (elem * threshold) <= mapped_elem (default: 0.0)
-g GAP, --gap GAP Ignore elements with an insertion/deletion of this or bigger size. (default: -1)
-v {info,debug,silent}, --verbose {info,debug,silent} Verbosity level (default: info)
-d, --drop_split Follow the bnMapper convention of silently dropping elements that span multiple chains, rather than the liftOver mapping convention for split alignments: keep elements that span multiple chains and report the longest aligned segment. This is not recommended, as it may lead to spurious gain/loss predictions for orthologous elements that happen to be split across chains due to chromosomal rearrangements, etc... (default: False)
-i {BED,narrowPeak}, --in_format {BED,narrowPeak} Input file format. (default: BED)

Output

Predictions are reported in tab-delimited format with the first four columns following the BED4 convention. The predicted evolutionary history (i.e., ortholog, gain in query, or loss in target) is reported in the "status" column. The final three columns contain the mapped location, in target coordinates, of mapped (ortholog) elements.

Column Description
chrom Chromosome on which the query element is located.
start Start position on query chromosome.
end End position on query chromosome.
name Element name or ID.
peak Peak location (narrowPeak input) or element midpoint (BED input)
status Predicted phylogenetic history: ortholog, gain_qname, or loss_tname
mapped chrom For mapped (ortholog) elements, the chromosome on which the mapped element is located, in target coordinates.
mapped start For mapped (ortholog) elements, the start position on the target chromosome on which the mapped element is located.
mapped end For mapped (ortholog) elements, the end position on the target chromosome on which the mapped element is located.
mapped_peak For mapped (ortholog) elements, the mapped peak position (narrowPeak input) or mapped element midpoint (BED input).

Copyright 2018, Adam Diehl (adadiehl@umich.edu), Boyle Lab, University of Michigan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapGL-0.0.3.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

mapGL-0.0.3-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file mapGL-0.0.3.tar.gz.

File metadata

  • Download URL: mapGL-0.0.3.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.8

File hashes

Hashes for mapGL-0.0.3.tar.gz
Algorithm Hash digest
SHA256 3f68a54f14c3ad1b7f7adfab3d43e6e16c3f1070fc4b938ab9a8a1ff69023323
MD5 f027d34d7be282228dc1e25565b38b54
BLAKE2b-256 e394e8a6ca330facde84432ce1dbd11e2b50e968b4117c5c23ec1db25b78fc1f

See more details on using hashes here.

File details

Details for the file mapGL-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: mapGL-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.8

File hashes

Hashes for mapGL-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ce6d0594274716dbd8e516dbfc4c29629f3c1d847a603e6f12e950412df18c6f
MD5 dc72a9ed53b9bbc9a562e87541a3b595
BLAKE2b-256 83f43637bc13c9157f2349a57e559de1d6cf87bb165b0918b5d65c9a76732354

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page