Skip to main content

Mapbox Vector Tile encoding and decoding.

Project description

Mapbox Vector Tile

CI pre-commit Coverage Status

Installation

mapbox-vector-tile is compatible with Python 3.9 or newer. It is listed on PyPi as mapbox-vector-tile. The recommended way to install is via pip:

pip install mapbox-vector-tile

An extra dependency has been defined to install pyproj. This is useful when changing the Coordinate Reference System when encoding or decoding tiles.

pip install mapbox-vector-tile[proj]

Encoding

Encode method expects an array of layers or at least a single valid layer. A valid layer is a dictionary with the following keys

  • name: layer name

  • features: an array of features. A feature is a dictionary with the following keys:

    • geometry: representation of the feature geometry in WKT, WKB, or a shapely geometry. Coordinates are relative to the tile, scaled in the range [0, 4096). See below for example code to perform the necessary transformation. Note that GeometryCollection types are not supported, and will trigger a ValueError.
    • properties: a dictionary with a few keys and their corresponding values.

The encoding operation accepts options which can be defined per layer using the per_layer_options argument. If there is missing layer or missing options values in the per_layer_options, the options of default_options are taken into account. Finally, global default values are used. See the docstring of the encode method for more details about the available options and their global default values.

  >>> import mapbox_vector_tile

  # Using WKT
  >>> mapbox_vector_tile.encode([
      {
        "name": "water",
        "features": [
          {
            "geometry":"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
            "properties":{
              "uid":123,
              "foo":"bar",
              "cat":"flew"
            }
          }
        ]
      },
      {
        "name": "air",
        "features": [
          {
            "geometry":"LINESTRING(159 3877, -1570 3877)",
            "properties":{
              "uid":1234,
              "foo":"bar",
              "cat":"flew"
            }
          }
        ]
      }
    ])

  b'\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x02 {"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02\x1aD\n\x03air\x12\x15\x12\x06\x00\x00\x01\x01\x02\x02\x18\x02"\t\t\xbe\x02\xb6\x03\n\x81\x1b\x00\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x03 \xd2\t"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02'


  # Using WKB
  >>> mapbox_vector_tile.encode([
      {
        "name": "water",
        "features": [
          {
            "geometry":b"\x01\x03\x00\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
            "properties":{
              "uid":123,
              "foo":"bar",
              "cat":"flew"
            }
          }
        ]
      },
      {
        "name": "air",
        "features": [
          {
            "geometry":b"\x01\x03\x00\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
            "properties":{
              "uid":1234,
              "foo":"bar",
              "cat":"flew"
            }
          }
        ]
      }
      ])

    b'\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x02 {"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02\x1aG\n\x03air\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03uid\x1a\x03foo\x1a\x03cat"\x03 \xd2\t"\x05\n\x03bar"\x06\n\x04flew(\x80 x\x02'

Coordinate transformations for encoding

The encoder expects geometries either:

  1. In tile-relative coordinates, where the lower left corner is origin and values grow up and to the right, and the tile is 4096 pixels square. For example, POINT(0 0) is the lower left corner of the tile and POINT(4096, 4096) is the upper right corner of the tile. In this case, the library does no projection, and coordinates are encoded as-is.
  2. In another coordinate system, with the tile bounds given by the quantize_bounds parameter. In this case, the library will scale coordinates so that the quantize_bounds fit within the range (0, 4096) in both x and y directions. Aside than the affine transformation, the library does no other projection.

It is possible to control whether the tile is in a "y down" coordinate system by setting the parameter y_coord_down=True on the call to encode(). The default is "y up".

It is possible to control the tile extents (by default, 4096 as used in the examples above), by setting the extents parameter on the call to encode(). The default is 4096.

If you have geometries in longitude and latitude (EPSG:4326), you can convert to tile-based coordinates by first projecting to Spherical Mercator (EPSG:3857) and then computing the pixel location within the tile. This example code uses Django's included GEOS library to do the transformation for LineString objects:

  SRID_SPHERICAL_MERCATOR = 3857

  def linestring_in_tile(tile_bounds, line):
      # `mapbox-vector-tile` has a hardcoded tile extent of 4096 units.
      MVT_EXTENT = 4096
      from django.contrib.gis.geos import LineString

      # We need tile bounds in spherical mercator
      assert tile_bounds.srid == SRID_SPHERICAL_MERCATOR

      # And we need the line to be in a known projection so we can re-project
      assert line.srid is not None
      line.transform(SRID_SPHERICAL_MERCATOR)

      (x0, y0, x_max, y_max) = tile_bounds.extent
      x_span = x_max - x0
      y_span = y_max - y0

      tile_based_coords = []
      for x_merc, y_merc in line:
          tile_based_coord = (int((x_merc - x0) * MVT_EXTENT / x_span),
                              int((y_merc - y0) * MVT_EXTENT / y_span))
          tile_based_coords.append(tile_based_coord)
      return LineString(*tile_based_coords)

The tile bounds can be found with mercantile, so a complete usage example might look like this:

  from django.contrib.gis.geos import LineString, Polygon
  import mercantile
  import mapbox_vector_tile

  SRID_LNGLAT = 4326
  SRID_SPHERICAL_MERCATOR = 3857

  tile_xyz = (2452, 3422, 18)
  tile_bounds = Polygon.from_bbox(mercantile.bounds(*tile_xyz))
  tile_bounds.srid = SRID_LNGLAT
  tile_bounds.transform(SRID_SPHERICAL_MERCATOR)

  lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)), srid=SRID_LNGLAT)
  tile_line = linestring_in_tile(tile_bounds, lnglat_line)
  tile_pbf = mapbox_vector_tile.encode({
    "name": "my-layer",
    "features": [ {
      "geometry": tile_line.wkt,
      "properties": { "stuff": "things" },
    } ]
  })

Note that this example may not have anything visible within the tile when rendered. It's up to you to make sure you put the right data in the tile!

Also note that the spec allows the extents to be modified, even though they are often set to 4096 by convention. mapbox-vector-tile assumes an extent of 4096.

  import mapbox_vector_tile
  from pyproj import Transformer
  from shapely.geometry import LineString

  SRID_LNGLAT = 4326
  SRID_SPHERICAL_MERCATOR = 3857
  direct_transformer = Transformer.from_crs(crs_from=SRID_LNGLAT, crs_to=SRID_SPHERICAL_MERCATOR, always_xy=True)

  lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)))

  # Encode the tile
  tile_pbf = mapbox_vector_tile.encode({
    "name": "my-layer",
    "features": [{
      "geometry": lnglat_line.wkt,
      "properties": {"stuff": "things"},
    }]
  },
    default_options={"transformer": direct_transformer.transform})

  # Decode the tile
  reverse_transformer = Transformer.from_crs(crs_from=SRID_SPHERICAL_MERCATOR, crs_to=SRID_LNGLAT, always_xy=True)
  mapbox_vector_tile.decode(tile=tile_pbf, default_options={"transformer": reverse_transformer.transform})

  {
      "my-layer": {
          "extent": 4096,
          "version": 1,
          "features": [
              {
                  "geometry": {
                      "type": "LineString",
                      "coordinates": [
                          [-122.10000156433787, 45.09999871982179],
                          [-122.20000202176608, 45.20000292038091]
                      ]
                  },
                  "properties": {
                      "stuff": "things"
                  },
                  "id": 0,
                  "type": "Feature"
              }
          ],
          "type": "FeatureCollection"
      }
  }

Quantization

The encoder also has options to quantize the data for you via the quantize_bounds option. When encoding, pass in the bounds in the form (minx, miny, maxx, maxy) and the coordinates will be scaled appropriately during encoding.

mapbox_vector_tile.encode([
      {
        "name": "water",
        "features": [
          {
            "geometry":"POINT(15 15)",
            "properties":{
              "foo":"bar",
            }
          }
        ]
      }
    ], default_options={"quantize_bounds": (10.0, 10.0, 20.0, 20.0)})

In this example, the coordinate that would get encoded would be (2048, 2048)

Additionally, if the data is already in a coordinate system with y values going down, the encoder supports an option, y_coord_down, that can be set to True. This will suppress flipping the y coordinate values during encoding.

Custom extents

The encoder also supports passing in custom extents. These will be passed through to the layer in the pbf, and honored during any quantization or y coordinate flipping.

mapbox_vector_tile.encode([
      {
        "name": "water",
        "features": [
          {
            "geometry":"POINT(15 15)",
            "properties":{
              "foo":"bar",
            }
          }
        ]
      }
    ], default_options={"quantize_bounds": (0.0, 0.0, 10.0, 10.0), "extents":50})

Decoding

Decode method takes in a valid google.protobuf.message Tile and returns decoded string in the following format:

  {
    layername: {
        'extent': 'integer layer extent'
        'version': 'integer'
        'features': [{
          'geometry': 'list of points',
          'properties': 'dictionary of key/value pairs',
          'id': 'unique id for the given feature within the layer '
          }, ...
        ]
    },
    layername2: {
      # ...
    }
  }

The decoding operation accepts options which can be defined per layer using the per_layer_options argument. If there is missing layer or missing options values in the per_layer_options, the options of default_options are taken into account. Finally, global default values are used. See the docstring of the decode method for more details about the available options and their global default values.

  >>> import mapbox_vector_tile

  >>> mapbox_vector_tile.decode(b'\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02')

  {
      "water": {
          "extent": 4096,
          "version": 2,
          "features": [
              {
                  "geometry": {
                      "type": "Polygon",
                      "coordinates": [[[0,0],[0,1],[1,1],[1,0],[0,0]]]
                  },
                  "properties": {
                      "foo": "bar",
                      "uid": 123,
                      "cat": "flew"
                  },
                  "id": 1,
                  "type": "Feature"
              }
          ],
          "type": "FeatureCollection"
      },
      "air": {
          "extent": 4096,
          "version": 2,
          "features": [
              {
                  "geometry": {
                      "type": "Polygon",
                      "coordinates": [[[0,0],[0,1],[1,1],[1,0],[0,0]]]
                  },
                  "properties": {
                      "foo": "bar",
                      "uid": 1234,
                      "balls": "foo",
                      "cat": "flew"
                  },
                  "id": 1,
                  "type": "Feature"
              }
          ],
          "type": "FeatureCollection"
      }
  }

Here's how you might decode a tile from a file.

  >>> import mapbox_vector_tile
  >>> with open('tile.mvt', 'rb') as f:
  >>>     data = f.read()
  >>> decoded_data = mapbox_vector_tile.decode(data)
  >>> with open('out.txt', 'w') as f:
  >>>     f.write(repr(decoded_data))

The decode function has a geojson option which enforces a GeoJson RFC7946 compatible result. Its default value is True. To enforce the behaviour of versions <2.0.0, please use geojson=False.

Use native protobuf library for performance

The c++ implementation of the underlying protobuf library is more performant than the pure python one. Depending on your operating system, you might need to compile the C++ library or install it.

Since May 6, 2022, the Python profobuf library is based on the udp library and thus, the generated Python code requires protoc 3.19.0 or newer. Cf. here. On debian Bullseye, the version of protoc available in the package registry is too old. Please install it from protobuf +GitHub repository.

To compile the proto file, you have to enable two environnement variables BEFORE running your python program :

$  sudo apt-get install libprotoc9 libprotobuf9 protobuf-compiler python-protobuf

Then, you'll have to enable two environnement variable BEFORE runing your python program :

 $ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp
 $ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION=2

and then:

$ protoc -I=mapbox_vector_tile/Mapbox/ --python_out=mapbox_vector_tile/Mapbox/ mapbox_vector_tile/Mapbox/vector_tile.proto

Changelog

Click here to see what changed over time in various versions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapbox_vector_tile-2.1.0.tar.gz (28.0 kB view details)

Uploaded Source

Built Distribution

mapbox_vector_tile-2.1.0-py3-none-any.whl (30.9 kB view details)

Uploaded Python 3

File details

Details for the file mapbox_vector_tile-2.1.0.tar.gz.

File metadata

  • Download URL: mapbox_vector_tile-2.1.0.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/6.6.10-76060610-generic

File hashes

Hashes for mapbox_vector_tile-2.1.0.tar.gz
Algorithm Hash digest
SHA256 9a0572e483c7b06762af73b9b5ee5f4e58441bcca9190105fe55cec71dd16cd8
MD5 982c87253536a5706a2d844a26d0d844
BLAKE2b-256 86e64fe7ac6f3c2302cf81a1acc373a3e60659b7443eb08da3067a3f7b8a2fa7

See more details on using hashes here.

File details

Details for the file mapbox_vector_tile-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: mapbox_vector_tile-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 30.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/6.6.10-76060610-generic

File hashes

Hashes for mapbox_vector_tile-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29ebdf6cb01a712e2ee08f6bdf7259a23e9c264b01fa69ae83358e33ebdd040c
MD5 2dabac4dabfd214e18b3d4a9a9b7264b
BLAKE2b-256 7cf89bbe6a9e900092dcc280faee74299fc9d621a82e1cd50628ed4f2ab4baf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page