Skip to main content

IEEE 802.11 MAP DCF Simulator

Project description

IEEE 802.11 Multi-AP Distributed Coordination Function (DCF) Simulator

mapc-dcf is a simulation tool for IEEE 802.11 Distributed Coordination Function (DCF) in a Multi-Access Point scenarios. It provides a framework for simulating and analyzing the performance of wireless networks under various configurations and environmental conditions. A detailed description can be found in:

  • Maksymilian Wojnar, Wojciech Ciężobka, Artur Tomaszewski, Piotr Chołda, Krzysztof Rusek, Katarzyna Kosek-Szott, Jetmir Haxhibeqiri, Jeroen Hoebeke, Boris Bellalta, Anatolij Zubow, Falko Dressler, Szymon Szott. "C-SR Scheduling with Machine Learning in IEEE 802.11 MAPC Networks", JOURNAL_NAME_TODO, 2024. [TODO_PREPRINT_INSERT, TODO_PUBLICATION_INSERT]

Features

TODO

Repository Structure

The repository is structured as follows:

TODO

Installation

The package can be installed using pip:

pip install mapc-dcf

Usage

TODO

How to reference mapc-sim?

TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapc_dcf-0.0.1.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

mapc_dcf-0.0.1-py3-none-any.whl (29.8 kB view details)

Uploaded Python 3

File details

Details for the file mapc_dcf-0.0.1.tar.gz.

File metadata

  • Download URL: mapc_dcf-0.0.1.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.4

File hashes

Hashes for mapc_dcf-0.0.1.tar.gz
Algorithm Hash digest
SHA256 dc882ce61d4d1f504118271091e0ef3081f38b5fc89aeef8bec52c06e40cf754
MD5 079919218446e933ee24cdc623e15283
BLAKE2b-256 3ddfd5163f90685c617ebd2b29e8fef7c73caee5d5e9e5f2ddfdab69266a9004

See more details on using hashes here.

File details

Details for the file mapc_dcf-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: mapc_dcf-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 29.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.4

File hashes

Hashes for mapc_dcf-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5fa0c168844f0c5c4b4b151bbb05f34dddd6daccae07d47bb1fecc8a807d7797
MD5 fa9354fbb7ab4a137f03e982e0064abc
BLAKE2b-256 b4310f63ccce08166db631647dc2f6b4bd38aa8727259865e521469dac777d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page