A multithreaded python wrapper for rust bindings of minimap2.
Project description
Mappy-rs
A multi-threaded minimap2 aligner for python. Built for readfish compatibility.
Heavily leaning on and inspired by Joeseph Guhlin's minimap2-rs repository. They also have a more heavily featured python client, which also provides multithreaded alignment. This client provides a more simple streaming interface for use in pipelines.
pip install mappy-rs
Developers
Start with some Docs on Py03 - https://pyo3.rs/latest/
If you wish to contribute, have a look at CONTRIBUTING.md
In order to build an importable module:
python -m venv .env
source -m .env/bin/activate
pip install ".[tests]"
To run the tests:
# Python
pytest
# Rust
cargo t --no-default-features
Then in your python shell of choice:
import mappy_rs
aligner = mappy_rs.Aligner("resources/test/test.mmi")
The current iteration of mappy-rs
serves as a drop in for mappy
, implementing all the same methods. However if this is the use case, you may well be better off using mappy
, as the extra level of Rust between your python and C++ may well add slightly slower performance.
Multithreading
In order to use multi threading, one must first enable it.
import mappy_rs
aligner = mappy_rs.Aligner("resources/test/test.mmi")
# Use 10 threads
aligner.enable_threading(10)
Enabling threading makes the map_batch
method available.
This method requires a list or iterable of dictionaries, which can have any number of keys and depth, but must contain the key seq
with a string value in the top-level dictionary.
Currently, the maximum batch size to be iterated in one call is 20000.
For example:
import mappy_rs
aligner = mappy_rs.Aligner("resources/test/test.mmi")
aligner.enable_threading(10)
seqs = [
{"seq": "ACGTAGCATCGAGACTACGA", "Other_random_key": "banter"},
{"seq": "ACGTAGCATCGAGACTACGA", "Other_random_key": "banter"},
]
for (mapping, data) in aligner.map_batch(seqs):
print(list(mapping))
print(data)
Benchmarks
A simple benchmark against classic mappy, and mappy_rs with incrementing numbers of threads, run on a 2018 Macbook.
Device
Property | Value |
---|---|
Model Name | MacBook Pro |
Model Identifier | MacBookPro15,2 |
Processor Name | Quad-Core Intel Core i7 |
Processor Speed | 2.7 GHz |
Number of Processors | 1 |
Total Number of Cores | 4 |
L2 Cache (per Core) | 256 KB |
L3 Cache | 8 MB |
Hyper-Threading Technology | Enabled |
Memory | 16 GB |
Results
Name (time in s) | Min | Max | Mean | StdDev | Median | IQR | Outliers | OPS | Rounds | Iterations |
---|---|---|---|---|---|---|---|---|---|---|
test_benchmark_multi[5] | 26.8900 (1.0) | 30.0969 (1.0) | 28.0622 (1.0) | 1.2614 (1.0) | 27.9017 (1.0) | 1.6081 (1.35) | 1;0 | 0.0356 (1.0) | 5 | 1 |
test_benchmark_multi[4] | 28.5573 (1.06) | 43.4543 (1.44) | 32.3371 (1.15) | 6.2815 (4.98) | 29.7480 (1.07) | 5.2148 (4.37) | 1;1 | 0.0309 (0.87) | 5 | 1 |
test_benchmark_multi[3] | 31.6497 (1.18) | 36.9986 (1.23) | 33.5103 (1.19) | 2.0542 (1.63) | 32.8415 (1.18) | 1.9576 (1.64) | 1;0 | 0.0298 (0.84) | 5 | 1 |
test_benchmark_multi[2] | 43.2616 (1.61) | 86.3859 (2.87) | 53.8572 (1.92) | 18.3339 (14.53) | 45.9328 (1.65) | 14.6382 (12.26) | 1;1 | 0.0186 (0.52) | 5 | 1 |
test_classic_mappy[mappy_al] | 78.5566 (2.92) | 82.8876 (2.75) | 79.6177 (2.84) | 1.8343 (1.45) | 78.8350 (2.83) | 1.1938 (1.0) | 1;1 | 0.0126 (0.35) | 5 | 1 |
test_classic_mappy[mappy_al_rs] | 83.7239 (3.11) | 87.9675 (2.92) | 85.4424 (3.04) | 1.6806 (1.33) | 85.6335 (3.07) | 2.3310 (1.95) | 2;0 | 0.0117 (0.33) | 5 | 1 |
test_benchmark_multi[1] | 84.8418 (3.16) | 94.0907 (3.13) | 86.7404 (3.09) | 4.1096 (3.26) | 84.8749 (3.04) | 2.4310 (2.04) | 1;1 | 0.0115 (0.32) | 5 | 1 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for mappy_rs-0.0.4.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 398695a7254f58433976c5189e4b8c68067f3960d867dbe614ad68e21276e5e2 |
|
MD5 | 5921f23c06f1dec7ac4b8f21351ae6bf |
|
BLAKE2b-256 | 870a08115a66c5a82ab4cb4c2a9b6f374d7777e4d362030ff0233b09e32ca64b |
Hashes for mappy_rs-0.0.4.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee625cd2a8178c0faff8a93a1e6b547032b5b05a1d299fbf583589be18da048c |
|
MD5 | ca6156aa51ca14cad3a2ac582963a21b |
|
BLAKE2b-256 | f4e649a37db91a24909224dc48be6fd963f0a644bbf2bde67bed3c22432a7a6a |
Hashes for mappy_rs-0.0.4.1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87aba6d525394040695cf9d9befe6899ed79f54e64cbf9a9b566fde207cf5439 |
|
MD5 | 8c7ff5219fb33f64002bead06338153d |
|
BLAKE2b-256 | 34be98a96db3fee7241e2f2c25a9e73bdf6c3c08e552fac4fb6769fad49662f8 |
Hashes for mappy_rs-0.0.4.1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07f1716e84dc90c29fdf4f4251b07597a94e6ee222a27797b7d9db87a9f5b480 |
|
MD5 | 76c00200ffae52311db3c61c10d413ac |
|
BLAKE2b-256 | 5a1da3a94a5f3110d3d48c5699d0c262b923bb49bc265242f997ae0ec49d406f |
Hashes for mappy_rs-0.0.4.1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a59999e91f34369bac2e6e0eb2e77cd01222c3c73fafc15c2c6a7fde40512f57 |
|
MD5 | 23b683a0093810449236d9a5d7301e65 |
|
BLAKE2b-256 | 9c0f391f03b4cd098f10031eab1e33b976b116b9abee96d398e8244c8b9e0acc |
Hashes for mappy_rs-0.0.4.1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 869f473d7877c1416d3cd0cca61094023f26b061687851289df94712223c3154 |
|
MD5 | 9865263af34aad611d230fb26305f012 |
|
BLAKE2b-256 | c84c4100bb17163e2acbf632e5a7df6d4b9f28aacf68ffc1077bd772d5266ae3 |